欢迎访问作物学报,今天是

作物学报

• •    

甘蓝型油菜BnaDUF579基因家族的鉴定与表达模式分析

王彬**,蒙姜宇**,邱浩良,贺亚军*,钱伟   

  1. 西南大学农学与生物科技学院, 重庆400716
  • 收稿日期:2025-01-15 修回日期:2025-04-27 接受日期:2025-04-27 网络出版日期:2025-05-26
  • 基金资助:
    木聚糖[本研究由国家自然科学基金项目(32272060), 国家重点研发计划项目(2022YFD1200400), 重庆市自然科学基金(cstc2021jcyj-msxmx1198, CSTB2024NSCQ-MSX0423)资助。

Identification and expression pattern analysis of the BnaDUF579 gene family in Brassica napus

WANG Bin**,MENG Jiang-Yu**,QIU Hao-Liang,HE Ya-Jun*,QIAN Wei   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2025-01-15 Revised:2025-04-27 Accepted:2025-04-27 Published online:2025-05-26
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32272060), the National Key Research and Development Program of China (2022YFD1200400), and the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmx1198, CSTB2024NSCQ-MSX0423).

摘要: Domain of unknown function 579 (DUF579)家族广泛存在于真核生物中,该家族在次生细胞壁发育和木聚糖生物合成中发挥着重要的作用。目前,还没有研究系统报道过甘蓝型油菜BnaDUF579基因家族。本研究通过生物信息学方法对甘蓝型油菜BnaDUF579基因家族进行进化树构建、基因结构和保守基序分析、染色体分布和共线性分析、组织表达分析、启动子顺式作用元件分析。结果表明,有31个甘蓝型油菜BnaDUF579家族成员得到鉴定,其中的24个成员都只有一个外显子、没有内含子。这些基因分为4个分支,包括Group1、Group2、Group3和Group4。同一分支内的成员具有相似的基序组成,但不同分支之间的成员在基序组成上存在明显差异。该家族与白菜亲缘关系较远、与甘蓝亲缘关系更近。BnaDUF579基因家族主要在油菜茎、根、角果和种子中表达,其启动子顺式作用元件涉及激素反应、对非生物胁迫的反应、组织发育、光响应。以上研究结果丰富了对甘蓝型油菜BnaDUF579基因的认识,为油菜BnaDUF579基因的功能研究奠定了基础。

关键词: 甘蓝型油菜, BnaDUF579, 基因家族, 表达分析, 木聚糖

Abstract:

The Domain of Unknown Function 579 (DUF579) family is widely distributed across eukaryotes and plays a critical role in secondary cell wall development and xylan biosynthesis. However, a comprehensive investigation of BnaDUF579 genes in Brassica napus has not yet been reported. In this study, we performed a genome-wide identification and bioinformatic analysis of BnaDUF579 family members. Phylogenetic relationships, gene structure, conserved motif composition, chromosomal distribution, and collinearity were systematically analyzed. Additionally, tissue-specific expression patterns and promoter cis-acting elements were examined. A total of 31 BnaDUF579 genes were identified, of which 24 contained only a single exon. Based on sequence alignment and phylogenetic analysis, these genes were classified into four clades: Group 1, Group 2, Group 3, and Group 4. Genes within the same clade exhibited similar motif compositions, whereas those in different clades showed distinct differences. Evolutionary analysis revealed that the BnaDUF579 gene family is more closely related to that of B. oleracea than to B. rapa. Expression profiling showed that BnaDUF579 genes are predominantly expressed in the stem, root, silique, and seed tissues of rapeseed. Promoter analysis indicated that cis-acting elements associated with hormone responses, abiotic stress, tissue developmentand light responsiveness are widely present. Overall, these findings enhance our understanding of the BnaDUF579 gene family and provide a foundation for future functional studies in Brassica napus.

Key words: Brassica napus, DUF579, gene family, expression analysis, xyloglucan

[1] Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, et al. Pfam: the protein families database in 2021. Nucleic Acids Res, 2021, 49: D412–D419.

[2] Bateman A, Coggill P, Finn R D. DUFs: families in search of function. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2010, 66: 1148–1152.

[3] Lyu P, Wan J, Zhang C, Hina A, Al Amin G M, Begum N, Zhao T. Unraveling the diverse roles of neglected genes containing domains of unknown function (DUFs): progress and perspective. Int J Mol Sci, 2023, 24: 4187.

[4] Luo C, Akhtar M, Min W, Bai X, Ma T, Liu C. Domain of unknown function (DUF) proteins in plants: function and perspective. Protoplasma, 2024, 261: 397–410.

[5] 张艺, 王晓晶, 赵淑清. 拟南芥DUF647家族成员RUS4植物表达载体的构建及亚细胞定位. 分子植物育种, 2020, 18: 444–449.
Zhang Y, Wang X J, Zhao S Q. Construction of the plant expression vector and subcellular localization of DUF647 family member RUS4 in Arabidopsis thaliana. Mol Plant Breed, 2020, 18: 444–449 (in Chinese with English abstract).

[6] 李文超, 张艺, 赵淑青. 拟南芥RUS4基因沉默对花药药室内壁次生加厚的影响. 中国细胞生物学学报, 2019, 41: 619–626.
Li W C, Zhang Y, Zhao S Q. Silencing of Arabidopsis RUS4 impairs anther endothecium secondary cell wall thickening. Chin J Cell Biol, 2019, 41: 619–626 (in Chinese with English abstract).

[7] 姜身飞, 谢云杰, 李乐乐, 王昱澎, 蔡秋华, 谢华安, 张建福. 水稻未知功能结构域基因OsDUF6的抗体制备. 福建农业学报, 2020, 35(2): 117–123.
Jiang S F, Xie Y J, Li L L, Wang Y P, Cai Q H, Xie H A, Zhang J F. Preparation of antibody for OsDUF6 with unknown functional domain from Oryzae sativa. Fujian J Agric Sci, 2020, 35(2): 117–123 (in Chinese with English abstract).

[8] Chen G, Cao X, Ma Z, Tang Y, Zeng Y, Chen L, Ye D, Zhang X. Overexpression of the nuclear protein gene AtDUF4 increases organ size in Arabidopsis thaliana and Brassica napus. J Genet Genomics, 2018, 45: 459–462.

[9] 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证. 作物学报, 2022, 48: 1635–1644.
Dai L S, Chang W, Zhang S, Qian M C, Li X D, Zhang K, Li J N, Qu C M, Lu K. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana. Acta Agron Sin, 2022, 48: 1635–1644 (in Chinese with English abstract).

[10] Yuan Y, Teng Q, Zhong R, Ye Z H. TBL3 and TBL31, two Arabidopsis DUF231 domain proteins, are required for 3-O-monoacetylation of xylan. Plant Cell Physiol, 2016, 57: 35–45.

[11] Gao Y, Badejo A A, Sawa Y, Ishikawa T. Analysis of two L-Galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana. Plant Cell Physiol, 2012, 53: 592–601.

[12] Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice (N Y), 2016, 9: 37.

[13] Yan D, Zhou Y, Ye S, Zeng L, Zhang X, He Z. Beak-shaped grain 1/TRIANGULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice. Sci China Life Sci, 2013, 56: 275–283.

[14] Cui Y, Wang M, Zhou H, Li M, Huang L, Yin X, Zhao G, Lin F, Xia X, Xu G. OsSGL, a novel DUF1645 domain-containing protein, confers enhanced drought tolerance in transgenic rice and Arabidopsis. Front Plant Sci, 2016, 7: 2001.

[15] Kim J M, Woo D H, Kim S H, Lee S Y, Park H Y, Seok H Y, Chung W S, Moon Y H. Arabidopsis MKKK20 is involved in osmotic stress response via regulation of MPK6 activity. Plant Cell Rep, 2012, 31: 217–224.

[16] Luo C, Guo C, Wang W, Wang L, Chen L. Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice. Plant Cell Rep, 2014, 33: 323–336.

[17] Song D, Sun J, Li L. Diverse roles of PtrDUF579 proteins in Populus and PtrDUF579-1 function in vascular cambium proliferation during secondary growth. Plant Mol Biol, 2014, 85: 601–612.

[18] Smith P J, O'Neill M A, Backe J, York W S, Peña M J, Urbanowicz B R. Analytical techniques for determining the role of domain of unknown function 579 proteins in the synthesis of O-methylated plant polysaccharides. SLAS Technol, 2020, 25: 345–355.

[19] Li M, Chen F, Luo J, Gao Y, Cai J, Zeng W, Doblin M S, Huang G and Xu W. The DUF579 proteins GhIRX15s regulate cotton fiber development by interacting with proteins involved in xylan synthesis. Crop J, 2024, 12: 1112–1125.

[20] Lee C, Teng Q, Zhong R, Yuan Y, Haghighat M, Ye Z H. Three Arabidopsis DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-O-methylation of glucuronic acid on xylan. Plant Cell Physiol, 2012, 53: 1934–1949.

[21] Temple H, Mortimer J C, Tryfona T, Yu X, Lopez-Hernandez F, Sorieul M, Anders N, Dupree P. Two members of the DUF579 family are responsible for Arabinogalactan methylation in Arabidopsis. Plant Direct, 2019, 3: e00117.

[22] Li X, Jackson P, Rubtsov D V, Faria-Blanc N, Mortimer J C, Turner S R, Krogh K B, Johansen K S, Dupree P. Development and application of a high throughput carbohydrate profiling technique for analyzing plant cell wall polysaccharides and carbohydrate active enzymes. Biotechnol Biofuels, 2013, 6: 94.

[23] Urbanowicz B R, Peña M J, Ratnaparkhe S, Avci U, Backe J, Steet H F, Foston M, Li H, O'Neill M A, Ragauskas A J, et al. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc Natl Acad Sci USA, 2012, 109: 14253–14258.

[24] Jensen J K, Kim H, Cocuron J C, Orler R, Ralph J, Wilkerson C G. The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J, 2011, 66: 387–400.

[25] Brown D, Wightman R, Zhang Z, Gomez L D, Atanassov I, Bukowski J P, Tryfona T, McQueen-Mason S J, Dupree P, Turner S. Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J, 2011, 66: 401–413.

[26] 刘新红, 邓力超, 曲亮, 惠荣奎, 李莓. 油菜的多用途利用及产业发展建议. 湖南农业科学, 2018(5): 100–103.
Liu X H, Deng L C, Qu L, Hui R K, Li M. Multipurpose utilization of rape and suggestions on development of rape industry. Hunan Agric Sci, 2018: 100–103 (in Chinese with English abstract).

[27] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950–953.

[28] Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol, 2014, 14: 93.

[29] Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733–1742.

[30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001, 25: 402–408.

[31] 陈吴钧, 刘江栋, 蒋凯旋, 王幼平, 蒋金金. 甘蓝型油菜BnKNOX基因家族的鉴定与分析. 作物学报, 2023, 49: 2991–3006.
Chen W J, Liu J D, Jiang K X, Wang Y P, Jiang J J. Identification and analysis of BnKNOX gene family in Brassica napus. Acta Agron Sin, 2023, 49: 2991–3006 (in Chinese with English abstract).

[32] Cai X, Chang L, Zhang T, Chen H, Zhang L, Lin R, Liang J, Wu J, Freeling M, Wang X. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biol, 2021, 22: 166.

[1] 夏琦, 郭滢, 王坤美, 王思忆, 巨建业, 彭雅雯, 刘忠松, 夏石头. 甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究[J]. 作物学报, 2025, 51(5): 1189-1197.
[2] 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析[J]. 作物学报, 2025, 51(5): 1198-1214.
[3] 周恩强, 缪亚梅, 周瑶, 姚梦楠, 赵娜, 王永强, 朱宇翔, 薛冬, 李宗迪, 石宇欣, 李波, 汪凯华, 顾春燕, 王学军, 魏利斌. 基于种子发育转录组的豌豆bZIP基因家族分析及种子发育候选基因的鉴定[J]. 作物学报, 2025, 51(4): 914-931.
[4] 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913.
[5] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[6] 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675.
[7] 郭冰, 秦家范, 李娜, 宋梦瑶, 王黎明, 李君霞, 马小倩. 谷子SHMT基因家族全基因组鉴定与表达分析[J]. 作物学报, 2025, 51(3): 586-5897.
[8] 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567.
[9] 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148.
[10] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[11] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[12] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[13] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[14] 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466.
[15] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!