欢迎访问作物学报,今天是

作物学报

• •    

基于北纬30°分界的长江中游油菜增产策略研究

杨锐1,陈敬东1,黄郢1,张学昆1,2,周登文3,刘清云4,徐劲松1,谢伶俐1,  许本波1,*   

  1. 1 长江大学农学院 / 农业农村部长江中游作物绿色高效生产重点实验室(部省共建) / 湿地生态与农业利用教育部工程研究中心, 湖北荆州434025; 2 岳麓山实验室 / 湖南省农业科学院作物研究所, 湖南长沙410128; 3 湖北省荆州市农业技术推广中心, 湖北荆州434020; 4 湖北省黄冈市浠水县农业技术推广中心, 湖北黄冈438021
  • 收稿日期:2025-07-22 修回日期:2025-10-30 接受日期:2025-10-30 网络出版日期:2025-11-07
  • 通讯作者: 谢伶俐, linglixie@yangtzeu.edu.cn; 许本波, benboxu@yangtzeu.edu.cn
  • 基金资助:
    本研究由农业生物育种重大项目(2023ZD04042)和农业农村部长江中游油菜单产提升技术集成示范基金项目(152304045)资助。

Region-specific yield optimization strategies for rapeseed (Brassica napus L.) in the middle Yangtze Basin across the 30°N latitude

Yang Rui1,Chen Jing-Dong1,Huang Ying1,Zhang Xue-Kun1,2,Zhou Deng-Wen3,Liu Qing-Yun4,Xu Jing-Song1,Xie Ling-Li1,*,Xu Ben-Bo1,*    

  1. 1 College of Agronomy, Yangtze University / Key Laboratory of Green and Efficient Crop Production in the Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Wetland Ecology and Agricultural Use, Ministry of Education, Jingzhou 434025, Hubei, China; 2 Yuelu Mountain Laboratory / Institute of Crops, Hunan Academy of Agricultural Sciences, Changsha 410128, Hunan, China; 3 Agricultural Technology Extension Center of Jingzhou, Jingzhou 434020, Hubei, China; 4 Agricultural Technology Extension Center of Xishui County, Huanggang 438021, Hubei, China
  • Received:2025-07-22 Revised:2025-10-30 Accepted:2025-10-30 Published online:2025-11-07
  • Supported by:
    This study was supported by the Major Projects of Agricultural Biology Breeding of China (2023ZD04042) and the Ministry of Agriculture and Rural Affairs Improving Rapeseed Yield Potential Ability in the Middle Reaches of the Yangtze River (152304045).

摘要: 为揭示长江中游冬油菜主要气象因子及重要农艺性状对产量形成的影响机制,本研究以北纬30°为界,系统比较分析该纬度线南北两侧冬油菜生态适应性与产量主导因子的异同,旨在为优化区域品种选育与精准栽培管理提供理论依据与实践指导。本研究选取2006—2007、2009—2010、2016—2017和2019—2020等4个气候条件差异显著、涵盖典型油菜生长季节气候类型(温暖干燥、偏冷湿润、气候波动强)的年份,作为代表性试验年度,在北纬30°以北与北纬30°以南共6个国家冬油菜区域试验站点,收集全部参试品种的重要农艺性状,并结合气象数据,通过多元统计方法,解析区域气象因子差异及其对产量的影响、重要农艺性状的差异及其与产量的协同关系。结果表明,北纬30°以北地区冬季气温更低、昼夜温差更大、降水量相对较少、日照时数前期较少后期较多;而北纬30°以南地区则相对温暖但后期多雨寡照,两地区气候差异显著。北纬30°以北地区平均产量比北纬30°以南地区高779.1 kg hm?2 (P < 0.01),北纬30°以北地区单株产量和角果数显著高于北纬30°以南地区,但病害压力较大。逐步回归分析显示,北纬30°以北地区产量主要受4月份降水等因素影响;而北纬30°以南地区则主要受12月份日照时数和3月份降水量影响。北纬30°以北地区产量主要由单株产量和每角粒数直接决定,分枝数则为主要负向因子;而北纬30°以南地区则更依赖单株产量与千粒重的协同作用,同时需控制分枝数与千粒重的负向效应。广适性品系0112、9ZYYP27、科乐油4号在南北两区均表现优异;而品系华68P25、渝华7号、越优577等则表现出明显的地域专适性。长江中游北纬30°两侧冬油菜生态区在气候资源、产量构成及主导性状上存在显著分化,区域光温水格局显著影响产量形成机制。北纬30°以北地区应注重苗期光照利用与后期排涝,优选耐渍、抗菌核病强、分枝数较少、单株产量高、粒数粒重兼优的品种;北纬30°以南地区则应重视中后期光照利用,注意选育高光效、耐渍、分枝数少、单株产量高、粒数多、含油量高品种。建议构建“广适性+专适性”相结合的区域化品种推广体系,协同推进精准育种与高效栽培,以实现长江中游冬油菜高产、稳产与绿色可持续发展。

关键词: 油菜, 长江中游, 气象因子, 农艺性状, 增产策略, 北纬30°

Abstract: To elucidate the effects of major climatic factors and key agronomic traits on yield formation of winter rapeseed in the middle Yangtze Basin, this study takes the 30°N latitude as a geographical boundary to systematically compare the ecological adaptability and yield-determining factors of winter rapeseed between northern and southern regions. The objective is to provide a theoretical foundation and practical guidance for optimizing regional line selection and precision cultivation. Four representative growing seasons, characterized by distinct climatic conditions—namely warm and dry, cold and humid, and years with strong climate variability—were selected (2006–2007, 2009–2010, 2016–2017, and 2019–2020). Field experiments were conducted across six national winter rapeseed regional trial stations located north and south of the 30°N line. Comprehensive agronomic data were collected for all tested lines, and corresponding monthly climate data were compiled. The impacts of climatic factors on yield, as well as variations in agronomic traits and their synergistic contributions to yield, were analyzed using multiple statistical methods. Results showed that the northern region (north of 30°N) experienced lower winter temperatures, a greater diurnal temperature range, relatively reduced precipitation, and less sunshine during early growth stages, but more sunshine during later stages. In contrast, the southern region (south of 30°N) was relatively warmer, with higher rainfall and reduced sunlight during late growth stages. On average, the northern region achieved significantly higher yields than the southern region by 779.1 kg hm?2 (P < 0.01). It also exhibited higher yield per plant and more siliques per plant, although it faced higher disease pressure. Stepwise regression analysis indicated that yield in the northern region was mainly influenced by April precipitation, while in the southern region it was primarily affected by December sunshine duration and March precipitation. Path analysis further revealed that yield in the north was directly determined by yield per plant and seed number per silique, with branch number serving as a major negative factor. In the south, yield was more dependent on the combined effects of yield per plant and thousand-seed weight, and the negative impact of excessive branching and seed size needed to be managed. Broadly adapted lines such as 0112, 9ZYYP27, and Keleyou 4 performed well across both ecological zones, while lines such as Hua 68P25, Yuhua 7, and Yueyou 577 showed strong region-specific adaptability. Significant ecological divergence exists across the 30°N boundary in terms of climatic resources, yield components, and dominant agronomic traits. Regional patterns of light, temperature, and water availability significantly influence yield formation mechanisms. It is recommended that the northern region focus on optimizing early-season light utilization and enhancing resistance to late-season waterlogging, prioritizing lines with Sclerotinia stem rot resistance, fewer branches, and high yield per plant with strong seed number and weight. For the southern region, emphasis should be placed on optimizing mid-to-late season light use and developing lines with high photosynthetic efficiency, waterlogging resistance, fewer branches, high yield per plant, more seeds, and elevated oil content. A regional deployment strategy combining “broad adaptability and specific adaptation” is proposed to synergistically advance precision breeding and efficient cultivation, thereby promoting high and stable yields and green, sustainable development of winter rapeseed in the middle Yangtze Basin.

Key words: rapeseed, the middle Yangtze Basin, climatic factors, agronomic traits, yield optimization strategies, 30°N

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613–617.

Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613–617 (in Chinese with English abstract).

[2] 何永强, 张金盔, 徐劲松, . 14-羟基芸苔素甾醇生长调节剂对油菜生长和产量的影响. 中国农业科学, 2024, 57: 1444–1454.

He Y Q, Zhang J K, Xu J S, et al. Effect of 14-hydroxylated brassinosteroids growth regulator on growth and yield of rapeseed. Sci Agric Sin, 2024, 57: 1444–1454 (in Chinese with English abstract).

[3] 宁宁, 莫娇, 胡冰, . 长江流域不同生态区油菜籽关键品质比较研究. 作物学报, 2023, 49: 3315–3327.

Ning N, Mo J, Hu B, et al. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley. Acta Agron Sin, 2023, 49: 3315–3327 (in Chinese with English abstract).

[4] Yang X Q, Liu Y, Bezama A, et al. Two birds with one stone: a combined environmental and economic performance assessment of rapeseed-based biodiesel production. GCB Bioenergy, 2022, 14: 215–241.

[5] 李谷成, 牛秋纯, 冷博峰, 新时代十年我国油菜产业发展与路径选择. 中国油料作物学报, 2024, 46: 228–235.

Li G C, Niu Q C, Leng B F, et al. The decade of rapeseed industry in the new era: development and its path choice. Chin J Oil Crop Sci, 2024, 46: 228–235 (in Chinese with English abstract).

[6] Huang J D, Cao X Y, Kuai J, et al. Evaluation of production capacity for rice-rapeseed cropping system in China. Field Crops Res, 2023, 293: 108842.

[7] Zandberg J D, Fernandez C T, Danilevicz M F, et al. The global assessment of oilseed Brassica crop species yield, yield stability and the underlying genetics. Plants, 2022, 11: 2740.

[8] Kirkegaard J A, Lilley J M, Berry P M, et al. Crop physiology case histories for major crops. Massachusetts: Academic Press, 2021. pp 518–549. 

[9] 郑娟, 黄凰, 廖宜涛, 长江中游地区油菜生产全程机械化技术进展与建议. 中国油料作物学报, 2024, 46: 245–259.

Zheng J, Huang H, Liao Y T, et al. Progress and suggestions on full mechanization of rapeseed production in the middle reaches of the Yangtze River. Chin J Oil Crop Sci, 2024, 46: 245–259 (in Chinese with English abstract).

[10] 左萃宸, 曾涛, 何永强, 长江中游南部油菜产区低产原因及育种对策. 中国油料作物学报, 2024, 46: 969–976.

Zuo C C, Zeng T, He Y Q, et al. Causes of low yield and breeding countermeasures in rapeseed producing areas in the middle reaches of the Yangtze River. Chin J Oil Crop Sci, 2024, 46: 969–976 (in Chinese with English abstract).

[11] 普多旺, 拉瓜登顿, 盛敏, 中国北纬30°地面太阳光谱观测. 光谱学与光谱分析, 2023, 43: 1881–1887.

Pu D W, Lagua D D, Sheng M, et al. Surface solar spectral observation along 30°N in China. Spectrosc Spect Anal, 2023, 43: 1881–1887 (in Chinese with English abstract).

[12] 陈晓阳. 北纬30°优质茶叶产区带. 国土资源导刊, 2005, 2(3): 56–57.

Chen X Y. 30° north latitude-high quality tea producing area. Land & resources Her, 2005, 2(3): 56–57 (in Chinese with English abstract).

[13] Zhu C W, Zhou X J, Zhao P, et al. Onset of East Asian subtropical summer monsoon and rainy season in China. Sci China Earth Sci, 2011, 54: 1845–1853.

[14] Zhou B T, Wang H J. Relationship between the boreal spring Hadley circulation and the summer precipitation in the Yangtze River valley. J Geophys Res Atmos, 2006, 111: 2005JD007006.

[15] Day J A, Fung I, Liu W H. Changing character of rainfall in Eastern China, 1951–2007. Proc Natl Acad Sci USA, 2018, 115: 2016–2021.

[16] LinHo L H, Huang X L, Lau N C. Winter-to-spring transition in east Asia: a planetary-scale perspective of the South China spring rain onset. J Clim, 2008, 21: 3081–3096.

[17] Gao H, Yang S, Kumar A, et al. Variations of the East Asian Mei-yu and simulation and prediction by the NCEP climate forecast system. J Clim, 2011, 24: 94–108.

[18] Gu W, Wang L, Hu Z Z, et al. Interannual variations of the first rainy season precipitation over South China. J Clim, 2018, 31: 623–640.

[19] Yao X P, Ma J L, Zhang D L, et al. A 33-yr Meiyu-season climatology of shear lines over the Yangtze-Huai River Basin in Eastern China. J Appl Meteor Climatol, 2020, 59: 1125–1137.

[20] Hu Y J, Zhu X Y, Ha Y, et al. Another source of error in simulating or predicting Meiyu: a case study. Theor Appl Climatol, 2024, 155: 9833–9846.

[21] Wu W, Shah F R, Ma B L. Understanding of crop lodging and agronomic strategies to improve the resilience of rapeseed production to climate change. Crop Environ, 2022, 1: 133–144.

[22] Raza A. Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: consequences and mitigation strategies. J Plant Growth Regul, 2021, 40: 1368–1388.

[23] 谢伶俐, 韦丁一, 章子爽, 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系. 中国农业科学, 2022, 55: 4793–4807.

Xie L L, Wei D Y, Zhang Z S, et al. Dynamic changes of gibberellin content during the development and its relationship with yield of Brassica napus L. Sci Agric Sin, 2022, 55: 4793–4807 (in Chinese with English abstract).

[24] 高少凡, 韦丁一, 何庆彪, 甘蓝型油菜苗期赤霉素含量及其代谢关键基因转录特性. 中国油料作物学报, 2024, 46: 1240–1250.

Gao S F, Wei D Y, He Q B, et al. Gibberellin metabolism level and key gene transcription characteristics at seedling stage of Brassica napus L. Chin J Oil Crop Sci, 2024, 46: 1240–1250 (in Chinese with English abstract).

[25] Jaime R, Alcántara J M, Manzaneda A J, et al. Climate change decreases suitable areas for rapeseed cultivation in Europe but provides new opportunities for white mustard as an alternative oilseed for biofuel production. PLoS One, 2018, 13: e0207124.

[26] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894–903.

Cong R H, Zhang Z, Lu J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894–903 (in Chinese with English abstract).

[27] 张学昆, 张春雷, 廖星, . 2008年长江流域油菜低温冻害调查分析. 中国油料作物学报, 2008, 30: 122–126.

Zhang X K, Zhang C L, Liao X, et al. Investigation on 2008'low temperature and freeze injure on winter rape along Yangtze River. Chin J Oil Crop Sci, 2008, 30: 122–126 (in Chinese with English abstract).

[28] Kutcher H R, Warland J S, Brandt S A. Temperature and precipitation effects on canola yields in Saskatchewan, Canada. Agric For Meteor, 2010, 150: 161–165.

[29] 何泽威, 丁晓雨, 徐劲松, 播种期降水偏多对油菜重要农艺性状和产量的影响. 中国油料作物学报, 2024, 46: 92–101.

He Z W, Ding X Y, Xu J S, et al. Effect of autumn continuously rainy weather which cause waterlogging in rapeseed (Brassica napus L.) traits and yield. Chin J Oil Crop Sci, 2024, 46: 92–101 (in Chinese with English abstract).

[30] 陈于婷, 丁晓雨, 许本波, 气候变暖对冬油菜产量、品质及重要农艺性状的影响. 作物学报, 2025, 51: 516–525.

Chen Y T, Ding X Y, Xu B B, et al. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.). Acta Agron Sin, 2025, 51: 516–525 (in Chinese with English abstract).

[31] Gopal A, Veerasamy R, Dhashnamurthi V, et al. Enhancing drought tolerance in okra through melatonin application: a comprehensive study of physiological, biochemical and metabolic responses. Not Bot Horti Agrobo, 2024, 52: 14055.

[32] Guntukula R. Assessing the impact of climate change on Indian agriculture: Evidence from major crop yields. J Public Aff, 2020, 20: e2040.

[33] 刘海卿, 孙万仓, 刘自刚, 北方不同生态区白菜型冬油菜农艺性状变化分析. 中国生态农业学报, 2015, 23: 694–704.

Liu H Q, Sun W C, Liu Z G, et al. Analysis of agronomic traits of winter rapeseed (Brassica campestris L.) in different ecological areas of North China. Chin J Eco-Agric, 2015, 23: 694–704 (in Chinese with English abstract).

[34] Huang J, Zhou L M, Zhang F Met al. Responses of yield fluctuation of winter oilseed rape to climate anomalies in South China at provincial scale. Int J Plant Prod, 2020, 14: 521–530.

[35] Dron N, Simpfendorfer S, Sutton T, et al. Cause of death: Phytophthora or flood? effects of waterlogging on Phytophthora medicaginis and resistance of chickpea (Cicer arietinum). Agronomy, 2022, 12: 89.

[36] Liang J P, Li H, Li N, et al. Analysis and prediction of the impact of socio-economic and meteorological factors on rapeseed yield based on machine learning. Agronomy, 2023, 13: 1867.

[37] Butkeviciene L M, Kriauciuniene Z, Pupaliene R, et al. Influence of sowing time on yield and yield components of spring rapeseed in Lithuania. Agronomy, 2021, 11: 2170.

[38] Wang X L, Li L, Wang C Yet al. Micro-ridge-furrow planting increases rapeseed yield and resource utilization efficiency through optimizing field microenvironment and light-nitrogen matching. Crop J, 2025, 13: 587–596.

[39] 蒙祖庆, 宋丰萍, 霍嘉慧, 高原气候下西藏不同熟期甘蓝型春油菜光温资源利用效率比较分析. 中国油料作物学报, 2023, 45: 63–71.

Meng Z Q, Song F P, Huo J H, et al. Comparative analysis on light-temperature resource use efficiency of spring rapeseed (Brassica napus) differing in maturity in China Tibet under plateau climate. Chin J Oil Crop Sci, 2023, 45: 63–71 (in Chinese with English abstract).

[40] Saroj R, Soumya S L, Singh S, et al. Unraveling the relationship between seed yield and yield-related traits in a diversity panel of Brassica juncea using multi-traits mixed model. Front Plant Sci, 2021, 12: 651936.

[41] Chang T, Wu J J, Wu X Pet al. Comprehensive evaluation of high-oleic rapeseed (Brassica napus) based on quality, resistance, and yield traits: a new method for rapid identification of high-oleic acid rapeseed germplasm. PLoS One, 2022, 17: e0272798.

[42] Radic V, Balalic I, Krstic M, et al. Correlation and path analysis of yield and yield components in winter rapeseed. Genetika, 2021, 53: 157–166.

[43] Pal L, Sandhu S K, Bhatia D, Sethi S. Genome-wide association study for candidate genes controlling seed yield and its components in rapeseed (Brassica napus subsp. napus). Physiol Mol Biol Plants, 2021, 27: 1933–1951.

[44] Sadat Hashemi P, Mohammadi A, Alizadeh B, et al. Simultaneous selection of oil yield and other agronomic characteristics in winter rapeseed hybrids. Jcb, 2023, 15: 60–68.

[45] Gholizadeh A, Oghan H A, Alizadeh B, et al. Phenotyping new rapeseed lines based on multiple traits: Application of GT and GYT biplot analyses. Food Sci Nutr, 2023, 11: 853–862.

[46] Li Q, Luo T, Cheng T, et al. Evaluation and screening of rapeseed varieties (Brassica napus L.) suitable for mechanized harvesting with high yield and quality. Agronomy, 2023, 13: 795.

[47] Liu S Y, Raman H, Xiang Y, et al. De novo design of future rapeseed crops: Challenges and opportunities. Crop J, 2022, 10: 587–596.

[48] Alizadeh B, Rezaizad A, Hamedani M Y, et al. Genotype x environment interactions and simultaneous selection for high seed yield and stability in winter rapeseed (Brassica napus) multi-environment trials. Agric Res, 2022, 11: 185–196.

[49] Habib Tabar Shiadeh S S, Feizabadi Y, Kosari-Moghaddam A. To what extent cultivar selection can affect the environmental impact of rapeseed production Environ Sustain Indic, 2025, 26: 100619.

[1] 王彬, 蒙姜宇, 邱浩良, 贺亚军, 钱伟. 甘蓝型油菜BnaDUF579基因家族的鉴定与表达模式分析[J]. 作物学报, 2025, 51(8): 2100-2110.
[2] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[3] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[4] 李世鹏, 陈才武, 张晶, 吕恬, 傅廷栋, 易斌. 基于改进U-Net++模型的油菜pol TCMS温敏两系育性等级鉴定及温度育性关系的量化研究[J]. 作物学报, 2025, 51(6): 1423-1434.
[5] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[6] 张金泽, 周庆国, 肖莉晶, 金海润, 欧阳青静, 龙旭, 晏中彬, 田恩堂. 芥菜型油菜不同组织硫苷含量的QTL定位与候选基因分析[J]. 作物学报, 2025, 51(5): 1166-1177.
[7] 夏琦, 郭滢, 王坤美, 王思忆, 巨建业, 彭雅雯, 刘忠松, 夏石头. 甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究[J]. 作物学报, 2025, 51(5): 1189-1197.
[8] 王清华, 朱格格, 方雯, 刘诗诗, 鲁剑巍. 基于高光谱遥感的油菜叶片氮磷养分含量诊断[J]. 作物学报, 2025, 51(5): 1326-1337.
[9] 王佳婕, 王正楠, BATOOL Maria, 王旺年, 文静, 任长忠, 何峰, 武优悠, 徐正华, 王晶, 蒯婕, 汪波, 周广生, 傅廷栋. 油菜和小麦响应盐碱胁迫的生理特性比较[J]. 作物学报, 2025, 51(5): 1215-1229.
[10] 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298.
[11] 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049.
[12] 厍惠洁, 孙明珠, 李世刚, 王东仙, 程泰, 蒋博, 陈爱武, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 黄腐酸、褐藻寡糖包衣对迟播油菜萌发成苗及产量的影响[J]. 作物学报, 2025, 51(4): 1022-1036.
[13] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[14] 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675.
[15] 张金泽, 周庆国, 杨旭, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析[J]. 作物学报, 2025, 51(3): 621-631.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!