欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (10): 1453-1457.

• 研究论文 • 上一篇    下一篇

玉米抗丝黑穗病的基因效应

高树仁1,2;李新海1;王振华3;李明顺1;张世煌1,*   

  1. 1中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程/农业部作物遗传育种重点开放实验室,北京 100081; 2黑龙江八一农垦大学,黑龙江大庆 163319;3东北农业大学,黑龙江哈尔滨 150030
  • 收稿日期:2006-01-21 修回日期:1900-01-01 出版日期:2006-10-12 网络出版日期:2006-10-12
  • 通讯作者: 张世煌

Gene Effects of Resistance to Head Smut in Maize

GAO Shu-Ren1 2,LI Xin-Hai1,WANG Zhen-Hua3,LI Ming-Shun1,ZHANG Shi-Huang1 *   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/ The National Key Facility for Crop Gene Resources and Genetic Improvement /Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Beijing 100081; 2Heilongjiang August First Land Reclamation University, Daqing 163319, Heilongjiang; 3Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2006-01-21 Revised:1900-01-01 Published:2006-10-12 Published online:2006-10-12
  • Contact: ZHANG Shi-Huang

摘要: 利用2个抗玉米丝黑穗病自交系(齐319和Mo17)与2个感病系(E28和黄早四),组配4个抗感杂交组合。2004年,对4个组合的亲本、F1、F2、BCR(F1与抗病亲本回交1代)和BCS(F1与感病亲本回交1代)6个世代群体分别在北京和黑龙江进行丝黑穗病的人工接种鉴定,采用世代平均值分析玉米抗丝黑穗病的遗传特点。研究表明,各杂交组合的抗病性均含有显著的加性效应,其中3个组合有显著的显性效应。不同杂交组合的抗病遗传模式表现不同,用感病亲本E28组配的2个组合(齐319×E28)和(Mo17×E28)的抗病性基本符合加性-显性遗传模型;而用另一个感病亲本黄早四组配的组合(齐319×黄早四)和(Mo17×黄早四)的抗病性存在明显的上位性效应。这说明玉米对丝黑穗病的抗性呈现较复杂的遗传模式。因此,在抗玉米丝黑穗病育种中既要重视对自交系抗病水平的鉴定,也要加强杂种F1的合理组配及抗病性评估。

关键词: 玉米, 丝黑穗病, 遗传分析, 模型检验

Abstract:

Head smut of maize is a kind of worldwide disease. Development of resistant varieties is an effective choice to control the disease, which depends on the knowledge of the resistance resources and genetic mechanism. In order to select and breed resistant varieties, some resistant resources of head smut have been selected. The resistance to head smut of maize is quantitative character controlled by numerous genes, and additive effect of resistant gene plays the leading role, while the dominant effect and the epitasis effect are much weaken. In this study, two resistant inbred lines (Qi 319 and Mo17) and two susceptible lines (Huangzao 4 and E28) were used to produce four cross populations. The parental lines, F1, F2, BCR (F1 backcrossed to the resistant parents) and BCS (F1 backcrossed to the susceptible parents) were evaluated by artificial inoculation in Beijing and Heilongjiang province in 2004. The randomized complete block design in the filed was used with 2 repetitions. The parental lines and F1 were grown in 1-row lots, BCR and BCS backcross generations in 4-row pots, F2 in 8-row plots, and the rows were 5 m long each and spaced 0.7 m apart with 17 holes per row and 2 seedlings per hole. In soft ripe stage, the total number of the seedlings and the number of the diseased seedlings and the diseased seedling rate of various generations by taking the plot as a unit was calculated. The gene effects of resistance to head smut in maize was evaluated through generation means for the four cross combinations. The additive-dominant genetic model used was Y=m+αa+βd; the additive-dominance-epistasis genetic model used was Y=m+αa+βd+α2aa+αβad+β2dd. The variances among means of generations in the four cross combinations were analyzed to find the models for a, d, aa, ad and dd gene effects using least squares regression analysis. Point estimated of m, a, d, aa, ad and dd were obtained by solving the system of equations. For the former model, the genetic effects were evaluated by the least squares regression analysis, and the latter that was analyzed by the same method, but the effects with no-significant should be omitted firstly, after that the χ2 test was involved to judge the significance of the models. The results showed that the additive effects were significant in 4 cross combinations, and dominant effects were significant in 3 cross combinations. The inheritance of resistance in Qi 319×E28 and Mo17×E28 fitted additive-dominant model, whereas the inheritance of Qi 319×Huangzao4 and Mo17×Huangzaov4 was in accordance with additive-dominant-epistasis model. The results indicated that the mode of resistance to head smut varied under different genetic background of maize. Therefore, not only the level of resistance to head smut is important, but also that of parental combination and F1 should be emphasized.

Key words: Maize (Zea mays L.), Head smut, Genetic analysis, Model test

中图分类号: 

  • S513
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!