欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (10): 1611-1617.

• 研究论文 • 上一篇    下一篇

利用回交导入系群体发掘水稻种质资源中的有利耐盐QTL

孙勇1;藏金萍1;王韵1;朱苓华1;Fotokian M H2;徐建龙 1,*;黎志康1,2   

  1. 1 中国农业科学院作物科学研究所/农作物基因资源与遗传改良国家重大科学工程,北京100081; 2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
  • 收稿日期:2007-02-12 修回日期:1900-01-01 出版日期:2007-10-12 网络出版日期:2007-10-12
  • 通讯作者: 徐建龙

Mining Favorable Salt-tolerant QTL from Rice Germplasm Using a Backcrossing Introgression Line Population

SUN Yong1;ZANG Jin-Ping1;WANG Yun1;ZHU Ling-Hua1;Fotokian M H 2;XU Jian-Long 1,*;LI Zhi-Kang 1,2   

  1. 1 Institute of Crop Sciences/ The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
  • Received:2007-02-12 Revised:1900-01-01 Published:2007-10-12 Published online:2007-10-12
  • Contact: XU Jian-Long

摘要: 以中等感盐籼稻IR64与粳稻Tarom molaii培育的85个BC2F8回交导入系为材料,定位苗期在140 mmol L-1 NaCl胁迫下影响叶片盐害级别、幼苗存活天数、地上部和根部的K+、Na+浓度等6个耐盐相关性状的QTL。幼苗存活天数与地上部Na+浓度呈极显著负相关,与地上部K+浓度呈显著正相关,与根部K+、Na+浓度无关,表明叶片盐害是由于地上部Na+积累过多造成的。根部K+浓度与Na+浓度高度正相关,但与地上部的K+、Na+浓度均无关,表明根对K+、Na+的离子吸收与向地上部运输存在不同的机制。检测到影响6个耐盐相关性状的23个QTL,包括影响叶片盐害级别的5个、幼苗存活天数的6个、地上部K+浓度的4个、地上部Na+浓度的4个、根部K+浓度的1个和根部Na+浓度的3个。影响地上部K+、Na+浓度与影响根部K+、Na+浓度的QTL分布在不同基因组区域,进一步表明根和茎对K+、Na+的吸收存在不同的遗传机制。通过比较图谱,发现影响耐盐相关性状的23个QTL中有12个(占52.2%)与以往不同群体中影响耐盐相关性状的QTL定位在同一或相邻的染色体区域。其中在第2染色体RM240~RM112区间检测到1个影响地上部所有4个耐盐相关性状的主效QTL,其增加耐盐性的有利基因来自供体Tarom molaii,适宜用作标记辅助选择耐盐性的遗传改良。对从种质资源中发掘“隐蔽”耐盐QTL进行了讨论。

关键词: 水稻, 耐盐性, 回交导入系, 基因发掘

Abstract:

Knowledge of the genetics of salt tolerance and mining of favorable alleles from germplasm should help develop rice varieties with high salt tolerance. QTLs affecting six salt-tolerance related traits including score of salt toxicity (SST), survival days of seedlings (SDS), shoot K+ concentration (SKC), shoot Na+ concentration (SNC), root K+ concentration (RKC), root Na+ concentration (RNC) were detected using 85 backcrossing introgression lines derived from a indica cultivar IR64 and a japonica upland cultivar Tarom molaii from Iran under salt stress with the concentration of 140 mmol L-1 NaCl at the seedling stage. Continuous variation and transgression for all six traits were observed in the BIL population although there were only significant differences in SDS and SNC between the parents. Correlation analysis indicated that SDS had highly negative correlation with SNC and positive correlation with SKC but no correlations with RKC and RNC, suggesting that salt toxicity of leaves resulted from over-accumulation of Na+ in shoots. RKC highly positively correlated with RNC while both of them had no correlations with SKC and SNC, respectively, indicating different mechanisms in uptake of K+ and Na+ in roots and their transport from roots to shoots. Twenty-three QTLs for the six traits on the ten chromosomes except chromosomes 5 and 10 were identified by single-marker ANOVA using SAS PROC GLM, including 5 for SST, 6 for SDS, 4 for SKC, 4 for SNC, 1 for RKC, and 3 for RNC. Among them, the region of RM240-RM112 on chromosome 2 simultaneously affected SST, SDS, SKC, and SNC and the allele associated with improvement of salt tolerance was from Tarom molaii. This QTL could be useful for improvement of salt tolerance through marker assisted selection. The QTLs affecting SKC and SNC didn’t share the same genomic region with the QTLs for RKC and RNC, further confirming the view that different genetic mechanisms involved in uptake of K+ and Na+ between roots and shoots. By comparative mapping, 12 (52.2%) QTLs for the six related traits located in the same or near genome regions on chromosomes 1, 2, 3, 7, and 9 with the QTLs previously identified in different mapping populations. The advantages of mapping QTLs using BILs and strategy of mining ‘hidden’ salt-tolerant main-effect QTL from rice germplasm were discussed.

Key words: Rice, Salt-tolerance, Backcrossing introgression lines, Gene mining

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!