欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (11): 1794-1801.

• 研究论文 • 上一篇    下一篇

不同栽培模式早稻-再生稻的能量积累与热值分析

林瑞余1,2;陈鸿飞2;邓家耀2;梁义元2;梁康迳2;林文雄1,2,*   

  1. 1 福建农林大学生命科学学院,福建福州350002;2 福建农林大学农业生态研究所,福建福州350002
  • 收稿日期:2007-03-09 修回日期:1900-01-01 出版日期:2007-11-12 网络出版日期:2007-11-12
  • 通讯作者: 林文雄

Analysis on Energy Accumulation and Calorific Value of Early-Season Rice and Its Ratooning Rice under Different Cultivation Models

LIN Rui-Yu12,CHEN Hong-Fei2,DENG Jia-Yao2,LIANG Yi-Yuan2,LIANG Kang-Jing2,LIN Wen-Xiong12*   

  1. 1 School of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou 350002, Fujian; 2 Institute of Agro-ecology, Fujian Agriculture & Forestry University, Fuzhou 350002, Fujian, China
  • Received:2007-03-09 Revised:1900-01-01 Published:2007-11-12 Published online:2007-11-12
  • Contact: LIN Wen-Xiong

摘要: 以杂交水稻新组合Ⅱ优航1号为材料探讨了超高产栽培和常规栽培模式下早稻-再生稻的干物质积累以及热值和能量固定特征。结果表明,超高产模式头季稻完熟期干物质积累量为2 220.04 g m-2,是常规模式的1.26倍,再生稻为1 697.62 g m-2,是常规模式的1.29倍。超高产模式下的热值,叶为14 848.7~18 494.9 J g-1,籽粒为15 810.3~17 438.0 J g-1,鞘为14 029.1~17 039.6 J g-1,茎为14 405.4~17 576.5 J g-1,叶和籽粒的热值显著高于茎、鞘,各器官及稻株的热值在不同栽培模式间无显著差异。在完熟期,超高产模式头季稻、再生稻的能量积累量分别为35.71 MJ m-2和26.24 MJ m-2,依次比常规模式高出27.4%和29.6%;籽粒能量分配比例头季稻为52.7%,比常规模式高1.2%,再生稻均为51.5%,不同栽培模式间无显著差异。灌浆过程中,超高产模式头季稻叶、茎、鞘的总能量表观转化率为39.7%,显著高于常规模式(23.1%),再生稻的叶、茎、鞘的总能量表观转化率为16.9%,也高于常规模式(14.7%),超高产模式下水稻群体能流更顺畅。同时,超高产模式头季稻黄熟过程根系的能量输出为7.9%,远低于常规模式(78.2%),保证头季稻灌浆和再生稻萌发的顺利进行;超高产模式再生稻籽粒贮能表观上25.9%来自稻桩的再转运,对后期光合的依赖比较小,保证了再生稻的稳产和高产。

关键词: 水稻, 再生稻, 栽培模式, 热值, 能量

Abstract:

A new hybrid rice Ⅱ Youhang 1 was used to analyze accumulated dry weight, energy fixation and calorific value in early-season rice and its ratooning rice under super high-yield cultivation (SHC) and conventional cultivation (CC) models. The results showed that accumulated dry weight in the plants at mature stage under SHC was 2 220.04 g m-2 and 1 697.62 g m-2 for early- season and ratooning rice, respectively, being 1.26 and 1.29 folds higher than that under CC. Calorific value in leaf, grain, sheath and culm of the plant was 14 848.7–18 494.9 J g-1, 15 810.3–17 438.0 J g-1, 14 029.1–17 039.6 J g-1, 14 405.4–17 576.5 J g-1 under SHC, respectively. The calorific values in leaf and grain were significantly higher than those in culm and sheath, but no significant difference was found under the two cultivation models. The accumulated energy in the plants at mature stage was 35.71 and 26.24 MJ m-2 under SHC for early season and ratooning rice, respectively, being 27.4% and 29.6% higher than that under CC. The ratio of accumulated energy partitioned into grains was 52.7% for early-season rice under SHC, which was 1.2% higher than that under CC, and for ratooning rice (51.5%), there was no significant difference between the two models. During grain filling, the ratio of energy remobilized from leaf, culm and sheath was 39.7% for early- season rice under SHC, being significantly higher than that under CC (23.1%), and the value was 16.9% for ratooning rice, which was also higher than that under CC (14.7%). It implied that the energy flow in rice community under SHC was much more smoothly than that under CC. In addition, at yellow mature stage, the energy exportation ratio of root was 7.9% under SHC, being obviously lower than that of CC, it was ensured for grain filling and regeneration of ratooning rice, and the energy of grains remobilized from the stubble of ratooning rice was 25.9% apparently, indicating that the grain yield under SHC relied less on the photosynthate in the period of grain filling, which was beneficial to steady and high yield of ratooning rice.

Key words: Rice, Ratoon rice, Cultivation model, Calorific value, Energy

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!