欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 156-161.doi: 10.3724/SP.J.1006.2009.00156

• 耕作栽培·生理生化 • 上一篇    下一篇

大豆子粒棉子糖含量与生态因子的关系

李卫东1,卢为国1,**,梁慧珍1,王树峰1,李金英1,于兆成2,耿臻3,刘亚非4   

  1. 1河南省农业科学院经济作物研究所/国家大豆改良中心郑州分中心,河南郑州450002;2濮阳市农业科学研究所,河南濮阳457000;3周口市农业科学院,河南周口466001;4焦作市农业科学研究所,河南焦作454151
  • 收稿日期:2008-05-16 修回日期:2008-07-18 出版日期:2009-01-12 网络出版日期:2008-11-18
  • 基金资助:

    本研究由国家科技支撑计划项目(2006BAD01A04),国家“十五”科技攻关计划项目(2004BA525B06)资助

Effects of Ecological Factors on Raffinose Content in Soybean Seed

LI Wei-Dong1,LU Wei-Guo1,**,LIANG Hui-Zhen1,WANG Shu-Feng1,LI Jin-Ying1,YU Zhao-Cheng2,GENG Zhen3,LIU Ya-Fei4   

  1. 1Insititute of Industrial Crops,Henan Academy of Agricultural Sciences,Zhengzhou450002,China;2Puyang Agricultural Institute,Puyang 457000,China;3Zhoukou Agricultural Institute,Zhoukiu 466001,Henan;4Jiaozuo Agricultural Institute,Jiaozuo 454151,China
  • Received:2008-05-16 Revised:2008-07-18 Published:2009-01-12 Published online:2008-11-18

摘要:

棉子糖是人与动物重要的营养成分。为了研究生态因子对大豆子粒中棉子糖含量的影响,20012002年在河南省夏大豆主产区的3个试点,以豫豆25为材料分13期播种,将78个样本子粒的棉子糖含量与气象、土壤养分和海拔等37个生态因子进行统计分析。诸样本棉子糖含量的变异范围为0.22%~0.87%。用逐步回归法筛选出8个生态因子与大豆棉子糖含量极显著正相关,各因子对于棉子糖含量影响的最大、最小值分别为0.392%0.156%按各因子的贡献大小依次为鼓粒成熟期昼夜温差分枝期日照、土壤pH值、花荚期日照、土壤锰含量、花荚期降水、分枝期降水、出苗期降水。该结果对高棉子糖含量品种选育和配套栽培技术研究有参考价值。

关键词: 大豆, 棉子糖, 生态因子, 分期播种

Abstract:

Raffinose is one of principal nutrients for both human beings and animals. To reveal the correlation between raffinose content in soybean seed and ecological factors, at the present experiment, soybean cultivar Yudou 25 was sown at three locations with 13 sowing dates in Henan province in 2001 and 2002, the raffinose contents in 78 soybean seed samples and 37 ecological factors including meteorological factors, soil nutrition and altitudes were investigated. The correlated factors were screened by stepwise regression, which showed significance on raffinose content. The results indicated that the raffinose content was substantially affected by the environmental conditions ranging from 0.220–0.869% among all samples, and positively correlated with eight ecological factors. The greatest difference in raffinose content caused by 8 ecological factors was 0.392%, and the smallest was 0.156%. The contribution to raffinose content in turn was the square of the diurnal temperature range at seed-filling and maturing stage, sunshine hour at branching stage, pH of soil, sunshine hour at blooming and podding stage, Mn content in soil, rainfall at blooming and podding stage, rainfall at branching stage, and rainfall at emergence stage. The results provided a reference for developing soybean cultivars with higher raffinose content.

Key words: Soybean[Glycine max(L.).Merrill], Raffinose, Ecological factors, Seeding dates

[1]Zhai F-L(翟凤林). Crop Quality Breeding(作物品质育种). Beijing: Agriculture Press, 1991. p 413(in Chinese)
[2]Miu J-W(缪金伟). Physiological characters of Soybean oligosaccharides. Chin J Animal Husbandry Vet Med (畜牧兽医科技信息), 2007, (3): 90(in Chinese)
[3]Wang L-Z(王连铮), Wang J-L(王金陵). Soybean Genetics & Breeding (大豆遗传育种学). Beijing: Science Press, 1992. pp 86–87(in Chinese)
[4]Institute of Nanjing Pedology, Chinese Academy of Sciences (中国科学院南京土壤研究所). Physicochemical Analysis of Soil(土壤理化分析). Beijing: Science Press, 1981(in Chinese)
[5]Liu Q-K(刘酋开). Traditional Agrochemical Analysis of Soil (土壤农化常规分析方法). Beijing: Science Press, 1984(in Chinese)
[6]Chinese Society of Soil Science (中国土壤学会). Methods of Agrochemical Analysis of Soil (土壤农业化学分析方法). Beijing: China Agricultural Science and Technology Press, 1999(in Chinese)
[7]Xia H-T(夏海涛). Analysis of soybean oligosaccharides by HPLC with ELS detector. Chin J Appl Chem (应用化学), 2006, 23(4): 462–464(in Chinese with English abstract)
[8]Tang Q-Y(唐启义), Feng M-G(冯明光). Practical Statistics and DPS Data Processing System (实用统计分析及其DPS数据处理系统). Beijing: China Agriculture Press, 1997. pp 221–230(in Chinese)
[9]Li W-D(李卫东), Lu W-G(卢为国), Liang H-Z(梁慧珍), Wang S-F(王树峰), Yuan B-J(苑保军), Geng Z(耿臻), Wang S-G(王素阁), Fan Y-Y(范彦英), Yang C-Y(杨彩云), Liu Y-F(刘亚非). Effects of eco-physiological factors on soybean protein content. Acta Agron Sin (作物学报), 2004, 30(10): 1065–1068(in Chinese with English abstract)
[10]Li W-D(李卫东), Wang S-F(王树峰), Lu W-G(卢为国), Liang H-Z(梁慧珍), Geng Z(耿臻), Yuan B-J(苑保军), Wang S-G(王素阁), Fan-Y-Y(范彦英), Yang C-Y(杨彩云), Liu Y-F(刘亚非). Effects of eco-physiological factors on soybean fat content. Soybean Sci (大豆科学), 2006, 25(2): 127–132(in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!