欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 279-285.doi: 10.3724/SP.J.1006.2009.00279

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

抗水稻纹枯病qSB-9Tq基因效应及作用方式分析

殷跃军;左示敏**;王辉;张亚芳;陈宗祥;马玉银;顾世梁;潘学彪   

  1. 扬州大学江苏省作物遗传生理重点实验室/植物功能基因组学教育部重点实验室,江苏扬州225009
  • 收稿日期:2008-07-18 修回日期:2008-10-10 出版日期:2009-02-12 网络出版日期:2008-12-11
  • 通讯作者: 潘学彪
  • 基金资助:

    本研究由国家技术研究发展计划(863计划)项目(2006AA10Z165,2006AA10A103),公益性行业(农业)科研专项经费(nyhyzx07-049)资助

Effect and Action Analysis of qSB-9Tq Conferring Resistance to Rice Sheath Blight

YIN Yue-Jun,ZUO Shi-Min**,WANG Hui,ZHANG Ya-Fang,CHEN Zong-Xiang,MA Yu-Yin,GU Shi-Liang,PAN Xue-Biao*   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genetics,Ministry of Education,Yangzhou University, Yangzhou 22509,china
  • Received:2008-07-18 Revised:2008-10-10 Published:2009-02-12 Published online:2008-12-11
  • Contact: PAN Xue-Biao

摘要:

水稻第9染色体上存在1个抗纹枯病QTL,被命名为qSB-9,水稻品种特青在该QTL上携带抗性等位基因qSB-9Tq,而Lemont携带相对感病等位基因qSB-9Le。为精确地评价qSB-9Tq的抗病效应,分析其作用方式,利用分子标记进行前景选择和背景选择,从轮回亲本Lemont与特青回交后代群体中筛选到1个目标单株。连续3年对该单株的扩繁后代(BC6F2)及随后获得的近等基因系采用嵌入法进行接种鉴定试验。田间试验采取2种不同的设计。第一种是完全随机试验,即从BC6F2分离群体中筛选出目标区间为qSB-9TqTq纯合型、qSB-9LeLe纯合型和qSB-9TqLe杂合型个体,并对3种基因型个体间的病级平均数差异进行统计分析。第二种设计为随机区组设计,即在BC6F3BC6F4代,分别对上述3种基因型的近等基因系群体,按3次重复的随机区组设计进行移栽和接种鉴定试验。结果表明,3年的试验结果表现出一致的趋势,即qSB-9Tq存在于分子标记RM242~Y92.5之间,可减轻病级1.0(0~9级病情分级系统)左右,且其抗性表现为几乎完全的显性特征。本研究的结果为qSB-9Tq的精细定位和育种利用奠定了基础。

关键词: 水稻(Oryza sativa L.), 纹枯病, QTL, 近等基因系, 标记辅助选择, 抗性效应;作用方式

Abstract:

A quantitative trait locus (QTL) contributing partial resistance to rice sheath blight (SB), named as qSB-9, has been confirmed on chromosome 9 of rice. A rice cultivar, Teqing, possesses the relatively resistant allele, qSB-9Tq, and Lemont has the relatively susceptible allele, qSB-9Le. To evaluate the resistance effect and action mode of qSB-9Tq accurately, a BC6F1 plant, from a backcross of Lemont (recurrent parent)/Teqing, with heterozygous genotype of qSB-9TqLe and similar genetic background to Lemont was screened out by using marker-assisted selection. Artificial inoculation with strong pathogenic Rhizoctonia solani line, RH-9, was conducted on the BC6F2 population and the near-isogenic lines (NILs) selected from BC6F3 and BC6F4 generation in a three-year test. Two experimental designs were adopted. One was completely randomized experiment, in which the plants with three genotypes (qSB-9TqTq, qSB-9LeLe, and qSB-9TqLe) on the locus of qSB-9 were distinguished by detecting marker genotypes flanking the qSB-9 in BC6F2 segregation population. The other was a randomized block design with 3 replicates for three NILs in BC6F3 and BC6F4 generations. Results from the two experiments all suggested that the qSB-9Tq was a dominant resistance allele in the interval between the markers of RM242 and Y92.5, and could reduce disease rating about 1.0 score under ‘0–9’ SB-disease rating system. The result of the research laid a strong foundation for the fine mapping and breeding utilization of the qSB-9Tq.

Key words: Rice(Oryza sativa L.), Sheath blight, QTL, Near-isogenic line, Marker-assisted selection, Resistant effect, Gene action

[1]Lee F N, Rush M C. Rice sheath blight: a major rice disease. Plant Dis, 1983, 67: 829-832
[2]Liao H-N(廖皓年), Xiao L-S(肖陵生), Wang H-S(王华生). The occurring and developing history of sheath blight in rice. Guangxi Plant Prot (广西植保), 1997, (3): 35-38 (in Chinese)
[3]Li Z K, Pinson S R M, Marchetti M A, Stansel J W, Park W D. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet, 1995, 91: 382-388
[4]Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X, Zhu L H. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet, 2000, 101: 569-575
[5]Kunihiro Y(国广泰史), Qian Q(钱前), Sato H(佐腾宏之), Teng S(滕胜), Zeng D-L(曾大力), Fujimoto K(藤本宽), Zhu L-H(朱立煌). QTL analysis of sheath blight resistance in rice (Oryza sa-tiva L.). Acta Genet Sin (遗传学报), 2002, 29(1): 50-55 (in Chi-nese with English abstract)
[6]Han Y-P(韩月澎), Xing Y-Z(邢永忠), Chen Z-X(陈宗祥), Gu S-L(顾世梁), Pan X-B(潘学彪), Chen X-L(陈秀兰), Zhang Q-F(张启发). Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui 63. Acta Genet Sin (遗传学报), 2002, 29(7): 565-570 (in Chinese with English ab-stract)
[7]Sato H, Ideta O, Audo I, Kunihiro Y, Hirabayashi H, Iwano M, Miyasaka A, Nemoto H, Imbe T. Mapping QTLs for sheath blight resistance in the rice line WSS2. Breed Sci, 2004, 54: 265-271
[8]Pinson S R M, Capdevielle F M, Oard J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci, 2005, 45: 503-510
[9]Tan C-X(谭彩霞), Zhang Y-F(张亚芳), Chen Z-X(陈宗祥), Yin Y-J(殷跃军), Ji X-M(纪雪梅), Yang Y(杨勇), Pan X-B(潘学彪). Identifying of two major quantitative genes controlling sheath blight resistance. China Biotechnol (中国生物工程杂志), 2004, 24(4): 79-80 (in Chinese with English abstract)
[10]Tan C-X(谭彩霞), Ji X-M(纪雪梅), Yang Y(杨勇), Pan X-Y(潘兴元), Zuo S-M(左示敏), Zhang Y-F(张亚芳), Zou J-H(邹军煌), Chen Z-X(陈宗祥), Zhu L-H(朱立煌), Pan X-B(潘学彪). Identi-fication and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross gene- rations. Acta Genet Sin (遗传学报), 2005, 32(4): 399-405 (in Chinese with English abstract)
[11]Ji Q, Lu J F, Chao Q, Gu M H, Xu M L. Delimiting a rice wide-compatibility gene S5n to a 50 kb region. Theor Appl Genet, 2005, 111: 1495-1503
[12]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321-4326
[13]Pan X-B(潘学彪), Chen Z-X(陈宗祥), Xu J-Y(徐敬友), Tong Y-H(童蕴慧), Wang Z-B(王子斌), Pan X-Y(潘兴元). The effects of different methods of inoculation and investigation on genetic research of resistance to rice sheath blight. J Jiangsu Agric Coll (江苏农学院学报), 1997, 18(3): 27-32 (in Chinese with English abstract)
[14]Chen Z-X(陈宗祥), Zou J-H(邹军煌), Han Y-P(韩月澎), Xu J-Y(徐敬友), Tong Y-H(童蕴慧), Yu H-X(于恒秀), Zhang Y-F(张亚芳), Pan X-B(潘学彪). An innovated method for research on inheritance of resistance to rice sheath blight and its verification. Chin J Rice Sci (中国水稻科学), 2002, 16(1): 74-76 (in Chinese with English abstract)
[15]Eizenga G C, Lee F N, Rutger J N. Screening Oryza species plants for rice sheath blight resistance. Plant Dis, 2002, 86: 808-812
[16]Rush M C, Hoff B J, Mcllrath W O. A uniform disease rating system for rice disease in the United States. In: Proc 16th Rice Tech Working Group. Lake Charles, Louisiana, 1976. p 64
[17]Pan X-B(潘学彪), Zhang Y-F(张亚芳), Zuo S-M(左示敏), Chen Z-X(陈宗祥). Discussion on QTLs identification and application for important quantitative traits in crops. J Yangzhou Univ (Agric Life Sci Edn) (扬州大学学报·农业与生命科学版), 2005, 26(2): 50-55 (in Chinese with English abstract)
[18]Yamamoto T, Lin H X, Sasaki T, Yano M. Identification of head-ing date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885-891
[19]Lin H X, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet, 2000, 101: 1021-1028
[20]Yin Y-J(殷跃军), Zuo S-M(左示敏), Wang H(王辉), Chen Z-X(陈宗祥), Ma Y-Y(马玉银), Zhang Y-F(张亚芳), Gu S-L(顾世梁), Pan X-B(潘学彪). Pyramiding effects of three quantitative trait loci for resistance to sheath blight using near-isogenic lines of rice. Chin J Rice Sci (中国水稻科学), 2008, 22(4): 340-346 (in Chinese with English abstract)
[21]Zuo S M, Zhang L, Wang H, Yin Y J, Zhang Y F, Chen Z X, Ma Y Y, Pan X B. Prospect of the QTL-qSB-9Tq utilized in molecular breeding program of japonica rice against sheath blight. J Genet Genomics, 2008, 35: 499-505
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[4] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[5] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[6] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[7] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[8] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[9] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[10] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[11] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[12] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[13] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[14] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[15] 孟鑫浩, 张靖男, 崔顺立, Charles Y.Chen, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析[J]. 作物学报, 2021, 47(10): 1874-1890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!