欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 445-451.doi: 10.3724/SP.J.1006.2009.00445

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

蛋白和核酸合抑制剂对氮素诱导甜菜谷氨酰胺合成酶基因表达的影响

陈胜勇;侯静**;李彩凤;马凤鸣;尹春佳;黄兆峰   

  1. 东北农业大学农学院,黑龙江哈尔滨150030
  • 收稿日期:2008-06-01 修回日期:2008-10-21 出版日期:2009-03-12 网络出版日期:2009-01-16
  • 通讯作者: 李彩凤
  • 基金资助:

    本研究由国家自然科学基金项目(30471017,30771276),黑龙江省博士后科研启动基金项目(BSH-Q06103)资助

Influence of Inhibitors of Nucleic Acid Synthesis and Protein Synthesis on Glutamine Synthetase Gene Expression Induced by Nitrogen in Sugar Beet (Beta vulgaris L.)

CHEN Sheng-Yong;HOU Jing**;LI Cai-Feng;MA Feng-Ming;YIN Chun-Jie; HUANG Zhao-Feng   

  1. College of Agriculture, Northeast Agricultural University, Harbin 150030,China
  • Received:2008-06-01 Revised:2008-10-21 Published:2009-03-12 Published online:2009-01-16
  • Contact: LI Cai-Feng

摘要:

谷氨酰胺合成酶(GS)家族是甜菜等高等植物体内氨态氮同化酶, 也是氮利用与循环的核心构件。为了揭示在氮素诱导下, 放线菌素D(AMD)和放线菌酮(CHM)对甜菜GS基因调控表达的影响。采用半定量RT-PCR技术, 对甜菜的胞液型谷氨酰胺合成酶基因(GS1)和质体型谷氨酰胺合成酶基因(GS2)进行mRNA的表达检测, 同时进行GS活性的测定。结果表明, 甜菜幼苗经过低浓度AMD处理2~6 h, GS活性略有增加, 9 h, 高和低浓度AMD处理下的GS活性都下降, 且随着浓度的增加下降幅度加大, 同时GS1mRNAGS2mRNA的相对量随浓度的增加而下降。CHM处理甜菜幼苗9 h, 随着浓度的增加和处理时间的延长, GS活性下降幅度增加, GS1mRNAGS2mRNA的相对量在不同CHM浓度处理间变化不显著。

关键词: 甜菜, 谷氨酰胺合成酶, 氮素, 放线菌素D, 放线菌酮

Abstract:

Glutamine synthetase (GS, EC6.3.1.2) families are the key enzymes involving in nitrogen assimilation in the higher plants as well as a core elements for nitrogen use efficiency and nitrogen recycle. The objective of this study was to reveal the effect of actinomycin D (AMD) and cycloheximide (CHM) on GS gene expression and its activities induced by nitrogen in sugar beet. GS activity in sugar beet was determined under the treatment of AMD and CHM. Gene transcripts of cytosolic glutamine synthetase (GS1) and plastidic glutamine synthetase (GS2) were detected by semi-quantitative PCR. And e?ciency of GSmRNA synthesis from each sample was estimated by quantitative PCR of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The results showed that the GS activities increased slightly under the low concentration treatment of AMD for 2–6 hours, but decreased with treatment of all concentrations. The transcript level of GS1mRNA and GS2mRNA decreased with the increase of AMD concentration treated for more than 9 h. GS activities decreased fast with the increase of CHM concentrations treated for more than 9 h. There was no significant difference between GS1mRNA and GS2mRNA expressions in the treatments with all CHM concentrations for more than 9 hours.

Key words: Sugar beet(Beta vulgaris L.), Glutamine synthetase, Nitrogen, Actinonycin D, Cycloheximide

[1]Migge A, Carrayol E, Hirel B, Becher T W. Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings. Planta, 2000, 210: 252–260
[2]Tobin A K, Yamaya T. Cellular compartmentation of ammonium assimilation in rice and barley. J Exp Bot, 2001, 52: 591–604
[3]Weber A, Flugge U I. Interaction of cytosolic and plastidic nitrogen metabolism in plants. J Exp Bot, 2002, 53: 865–874
[4]Li C-F(李彩凤), Ma F-M(马凤鸣), Zhao Y(赵越). Effects of nitrogen forms on key enzyme activities and related products in sugar and nitrogen metabolism of sugar beet (Beta vulgaris L.). Acta Agron Sin (作物学报), 2003, 29(1): 128–132(in Chinese with English abstract)
[5]Zhao Y(赵越), Ma F-M(马凤鸣), Zhang D-Y(张多英). Study on the absorption kinetics of different nitrogen in sugar beet. J Northeast Agric Univ(东北农业大学学报), 2006, 37(3): 294–298 (in Chinese with English abstract)
[6]Wu X-P(吴小平), Wang P-H(汪沛洪), Zhang H(张惠). Effects of osmotic stress on protease activities of two winter wheat cultivars with different drought resistance. Acta Agric Boreali-Occident Sin (西北农业学报), 1994, 3(1): 49–53(in Chinese with English abstract)
[7]Xue Y-C(薛永常), Chen Y-J(陈永军), Cao M(曹敏). Effect of actinomycin D and cycloheximide on ABA accumulation induced by water stress in winter wheat seedling. J Hebei Norm Univ(Nat Sci)(河北师范大学学报×自然科学版), 1997, 21(3): 317–319(in Chinese with English abstract)
[8]Wang X-K(王学奎), Li H-S(李合生), Liu W-D(刘武定). Preliminary study on mechanism of light regulated glutamine synthetase in wheat leaves. J Huazhong Agric Univ(华中农业大学学报), 2000, 19(2): 102–105(in Chinese with English abstract)
[9]Yin L-P(印莉萍), Chai X-Q(柴晓清), Liu X-L(刘祥林). Influence of chloroplast development and light on the gene expression of glutamine synthetase in wheat leaves. Acta Bot Sin(植物学报), 1994, 36(8): 597–602(in Chinese with English abstract)
[10]Schumidt S, Mobr H. Regulation of the appearance of glutamine synthetase in mustard (Sinap isalba L.) cotyledons by light, nitrate and ammonium. Planta, 1989, 177: 526–534
[11]Hirel B, Cadal P. Glutamine synthetase in rice: A comparative study of the enzymes from roots and leaves. Plant Physiol, 1980, 66: 619–623
[12]Peterman T K, Goodman H M. The glutamine synthetase gene family of Arabidopsis thaliana: Light-regulation and differential expression in leaves, root and seeds. Mol Gen Genet, 1991, 230: 145–154
[13]Chen Y(陈煜), Zhu B-G(朱保葛), Zhang J(张敬). Effects of different nitrogens on activities of nitrate reductase, glutamine synthetase and seed protein contents in soybean vultivars. Soybean Sci(大豆科学), 2004, 23(2): 143–146(in Chinese with English abstract)
[14]Dai T-B(戴廷波), Cao W-X(曹卫星), Sun C-F(孙传范). Effect of enhanced ammonium nutrition on photosynthesis and nitrate reductase and glutamine synthetase activities of winter wheat. Chin J Appl Ecol (应用生态学报), 2003, 14(9): 1529–1532(in Chinese with English abstract)
[15]Mack G. Organ-specific changes in the activity and subunit composition of glutamine synhetase isoforms of barley (Hordeum vulgare L.) after growth on different levels of NH4+. Planta, 1995, 196: 231–238
[16]Zhang C F, Peng S B, Peng X X. Response of glutamine synthetase isoforms to nitrogen sources in rice (Oryza sativa L.) roots. Plant Sci, 1997, 125: 163–170
[17]Lam H M, Coschigano K T, Oliveira I C. The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 569–593
[18]Li C-J(李常健), Lin Q-H(林清华), Zhang C-F(张楚富). Effect of NaCl stress on activity and isozymes of glutamine synthetase in rice plants. J Wuhan Univ(Nat Sci Edn)(武汉大学学报×自然科学版), 1999, 45(4): 497–500(in Chinese with English abstract)
[19]Hoshi H, Tanaka Y, Hibino T. Enhanced tolerance to salt stress in transgenic rice that overexpress chloroplast glutamine synthetase. Plant Mol Biol, 2000, 43: 103–111
[20]Miflin B J, Lea P J. Ammonia Assimilation in the Biochemistry of Plants: Amino Acids Their Derivatives. New York: Academic Press, 1980. pp 169–202
[21]Oliveira L C, Coruzzi G M. Carbon and Amino acids reciprocally modulate the expression of glutamine synthetase in Arabidopsis. Plant Physiol, 1999, 121(1): 301–309
[22]Chen S-Y(陈胜勇), Li C-F(李彩凤), Ma F-M(马凤鸣), Yang D-G(杨德光), Hou J(侯静), Sun S-C(孙世臣), Yin C-J(尹春佳), Huang Z-F(黄兆峰), Zhao L-Y(赵丽影), Chen Y-T(陈业婷), Yue P(越鹏). Expression analysis of glutamine synthetase gene under different nitrogen conditions in sugar beet (Beta vulgaris L.). Crops (作物杂志), 2008, (4): 64–67(in Chinese with English abstract)
[23]Kang S M, Titus J S. Activity pro?les of enzymes involved in glutamine and glutamate metabolism in the apple during autumnal snescence. Physiol Plant, 1980, 50: 291–297
[24]Kang S M, Titus J S. Increased proteolysis of senescing rice leaves in the presence of NaCl and KCl. Plant Physiol, 1989, 91: 1232–1237
[25]Kar M, Feierabend J. Changes in the activities of enzymes involved in amino acid metabolism during the senescence of detached wheat leaves. Physiol Plant, 1984, 62: 39–44
[26]Yuang H, Hou C A. comparative study of two forms of glutamine synthetase from rice leaves. Bot Bull Acad Sin, 1987, 28: 91–108
[27]Han N(韩娜), Ge R-C(葛荣朝), Zhao B-C(赵宝存). Research development of the glutamine synthetase in plants. J Hebei Norm Univ(Nat Sci Edn)(河北师范大学学报×自然科学版), 2004, 28(4): 407–410 (in Chinese with English abstract)
[28]Becker K, Pan D, Whitley C B. Real-time quantitative polymerase chain reaction to assess gene transfer. Human Gene Therapy, 1999, 10: 2559–2566
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[7] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[8] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
[9] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[10] 阮俊梅, 张俊, 刘猷红, 董文军, 孟英, 邓艾兴, 杨万深, 宋振伟, 张卫建. 田间开放式增温对东北水稻氮素利用的影响[J]. 作物学报, 2022, 48(1): 193-202.
[11] 付正豪, 马中涛, 魏海燕, 邢志鹏, 刘国栋, 胡群, 张洪程. 不同机械化栽培方式下控释肥配比对迟熟中粳水稻产量形成及氮素吸收利用的影响[J]. 作物学报, 2022, 48(1): 165-179.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[14] 柯健, 陈婷婷, 徐浩聪, 朱铁忠, 吴汉, 何海兵, 尤翠翠, 朱德泉, 武立权. 控释氮肥运筹对钵苗摆栽籼粳杂交稻甬优1540产量及氮肥利用的影响[J]. 作物学报, 2021, 47(7): 1372-1382.
[15] 吴冰卉, 王桂萍, 王玉斌, 李召虎, 张明才. ACC处理对不同基因型玉米幼苗响应氮素供给的调控效应[J]. 作物学报, 2021, 47(5): 799-806.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!