作物学报 ›› 2009, Vol. 35 ›› Issue (3): 522-529.doi: 10.3724/SP.J.1006.2009.00522
敖雪;谢甫绨*;刘婧琦;张惠君
AO Xue;XIE Fu-Ti*;LIU JIng-Qi;ZHANG Hui-Jun
摘要:
以不同磷效率大豆品种为材料, 调查磷高效和磷低效品种的生理指标,测定大豆生育期地上器官干物重,分析光合特性及物质生产特性。结果表明,在低磷条件下, 各生育期的叶绿素含量、可溶性蛋白含量、净光合速率、气孔导度和叶肉导度均以磷高效品种较高, 磷高效品种光合作用较强,CO2同化能力较高。各生育期, 供试品种的叶绿素含量、可溶性蛋白含量、净光合速率、气孔导度和叶肉导度均在结荚期达到高峰而后下降, 但磷高效品种下降速率低于磷低效品种。磷高效品种的单株和群体均具较高光合效率及生长参数, 并受磷浓度影响较小, 主要原因是其植株吸收磷量较多, 有利于植株体内磷素平衡, 即便在低磷条件下也有相对较强的光合能力,令其在低磷、中磷和高磷条件下都有较高的产量和籽粒磷效率。
[1] Peng Z-P(彭正萍), Li C-J(李春俭), Men M-X(门明新). Effects of P deficiency on photosynthetic characters and yield in two wheat cultivars with different spike types. Acta Agron Sin (作物学报), 2004, 30(8): 739–744(in Chinese with English abstract) [2] Ae N, Arihara J, Okada K. Phosphorus uptake by pigeon pea and its role in cropping system of the India Subcontinent. Science, 1990, 248: 477–480 [3] Yan X-L(严小龙), Zhang F-S(张福锁). Genetics of Plant Nutrition (植物营养遗传学). Beijing: China Agriculture Press, 1997(in Chinese) [4] Cao A-Q(曹爱琴), Yan X-L(严小龙). Adaptation of soybean root architecture under different P conditions. J South China Agric Univ (华南农业大学学报), 2001, 22(1): 92(in Chinese) [5] Gerloff G C, Gabelman W H. Genetic Basis of Inorganic Plant Nutrition. In: Lauchli A, Bieleski R L, eds. Encyclopedia of Plant Physiology. Berlin: Springer-Verlag, 1983. Vol. 15B, 453–480 [6] Ding Y-C(丁玉川), Chen M-C(陈明昌), Cheng B(程滨), Li L-J(李丽君). Effect of different phosphorus levels on plant growth and development of soybean. J Shanxi Agric Sci (山西农业科学), 2006, 34(1): 47–49(in Chinese with English abstract) [7] Muchhal U S, Raghothama K G. Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA, 1999, 96: 5868–5872 [8] Gourley J P, Allan D L, Russelle M P. Plant nutrient efficiency: A comparison of definitions and suggested improvement. Plant Soil, 1994, 158: 29–37 [9] Li Z-G(李志刚), Xie F-T(谢甫绨), Song S-H(宋书宏). The selection of high phosphorus using efficient soybean genotype. Chin Agric Sci Bull (中国农学通报), 2004, 20(5): 126–129(in Chinese with English abstract) [10] Xiao K(肖凯), Gu J-T(谷俊涛), Zou D-H(邹定辉), Zhang R-X(张荣铣) , Qian W-P(钱维朴). Studies on photosynthetic carbon assimilating properties of hybrid wheats and their parents. Acta Agron Sin (作物学报), 1999, 25(3): 381–388(in Chinese with English abstract) [11] You M-A(游明安), Gai J-Y(盖钧镒), Ma Y-H(马育华). Relationship of leaf photosynthetic rate with stomatal and mesophyll conductance in soybean. Acta Agron Sin (作物学报), 1995, 21(2): 145–149(in Chinese with English abstract) [12] Zhang X-Z(张宪政). Detection of chlorophyll content in plant tissue. Liaoning Agric Sci (辽宁农业科学), 1986, (3): 19–21(in Chinese) [13] Read S M, Northcote D H. Minimization of variation in the response to different protein of the coomassie blue G dye-binding: Assay for protein. Anal Biochen, 1981, 116: 53–64 [14] Nanjing Agricultural University(南京农业大学). Analysis of Soil Agricultural Chemistry (土壤农化分析). Beijing: China Agriculture Press, 1994. pp 268–270 (in Chinese) [15] Tong X-J(童学军), Yan X-L(严小龙), Li H-Z(李惠珍), Lu Y-G(卢永根), Zhang W-X(章文贤). Studies on characteristics of phosphorus efficiency of soybean genotypes and relationship between those and some morphological, physiological traits. J Fujian Teach Univ (Nat Sci)(福建师范大学学报×自然科学), 2000, 16(1): 84–88(in Chinese with English abstract) [16] Zhao C-J(赵春江). Research on Information Standards for Digital Agriculture-Crops (数字农业信息标准研究-作物卷). Beijing: China Agriculture Press, 2004. pp 356–370(in Chinese) [17] Bjorn M, Kebede H, Rilling C. Photosynthetic differences among Lycopersicon species and Triticum aestivum cultivars. Crop Sci, 1994, 34: 113–118 [18] Pan X-H(潘晓华), Shi Q-H(石庆华), Guo J-Y(郭进耀), Wang Y-R(王永锐). Advance in the study of effects of inorganic phosphate on plant leaf photosynthesis and its mechanism. Plant Nutr Fer Sci (植物营养与肥料学报), 1997, 3(3): 201–208(in Chinese with English abstract) [19] Usuda H, Shimogawara K. Phosphate deficiency in maize. Ι. Leaf phosphate status, growth, photosynthesis and carbon partitioning. Plant Cell Physiol, 1991, 32: 497–504 [20] Zhang J-H(张建恒), Li B-X(李宾兴), Wang B(王斌), Guo C-J(郭程谨), Li Y-M(李雁鸣), Xiao K(肖凯). Studies on the characteristics of photosynthesis and dry matter production in wheat varieties with different P efficiency. Sci Agric Sin (中国农业科学), 2006, 39(11): 2200–2207(in Chinese with English abstract) [21] Raven J A, Glidwell S M, Johnson C B. Process Liming Photosynthetic Conductance. In: Physiological Process Limiting Plant Productivity. London: Butterworths, 1981. pp 109–136 [22] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 1982, 33: 317–345 [23] Xu D-Q(许大全), Ding Y(丁勇), Wu H(武海). Relationships between diurnal variations of photosynthetic efficiency and midday depression of photosynthetic rate in wheat leaves under field condition. Acta Phytophysiol Sin (植物生理与分子生物学学报), 1992, 18(3): 279–284(in Chinese with English abstract) [24] Cao L-M(曹黎明), Pan X-H(潘晓华). Analysis of some indexes used for evaluating tolerance of different rice genotypes to low phosphorus treatment in sand culture. Acta Agric Shanghai (上海农业学报), 2000, 16(4): 31–34(in Chinese with English abstract) |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[4] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[5] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[6] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[7] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[8] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[9] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[10] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[11] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[12] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[13] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[14] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[15] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
|