欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 522-529.doi: 10.3724/SP.J.1006.2009.00522

• 耕作栽培·生理生化 • 上一篇    下一篇

不同磷效率大豆品种光合特性的比较

敖雪;谢甫绨*;刘婧琦;张惠君   

  1. 沈阳农业大学农学院,辽宁沈阳110161
  • 收稿日期:2008-07-17 修回日期:2008-10-23 出版日期:2009-03-12 网络出版日期:2009-01-16
  • 通讯作者: 谢甫绨
  • 基金资助:

    本研究由辽宁省科技厅科技基金项目(2006201008),辽宁省教育厅创新团队项目(2006T116)资助

Comparison of Photosynthetic Characteristics in Soybean Cultivars with Different Phosphorus Efficiencies

AO Xue;XIE Fu-Ti*;LIU JIng-Qi;ZHANG Hui-Jun   

  1. College of Agronomy, Shenyang Agricultural University, Shenyang 110161,China
  • Received:2008-07-17 Revised:2008-10-23 Published:2009-03-12 Published online:2009-01-16
  • Contact: XIE Pu-Ti

摘要:

以不同磷效率大豆品种为材料, 调查磷高效和磷低效品种的生理指标,测定大豆生育期地上器官干物重,分析光合特性及物质生产特性。结果表明,在低磷条件下, 各生育期的叶绿素含量、可溶性蛋白含量、净光合速率、气孔导度和叶肉导度均以磷高效品种较高, 磷高效品种光合作用较强,CO2同化能力较高。各生育期, 供试品种的叶绿素含量、可溶性蛋白含量、净光合速率、气孔导度和叶肉导度均在结荚期达到高峰而后下降, 但磷高效品种下降速率低于磷低效品种。磷高效品种的单株和群体均具较高光合效率及生长参数, 并受磷浓度影响较小, 主要原因是其植株吸收磷量较多, 有利于植株体内磷素平衡, 即便在低磷条件下也有相对较强的光合能力,令其在低磷、中磷和高磷条件下都有较高的产量和籽粒磷效率。

关键词: 大豆, 磷效率, 光合特性

Abstract:

Soybean is sensitive to phosphorus deficiency in whole growth stage. Phosphorus plays an important role in photosynthesis. Our objective is to compare the difference of photosynthetic characteristics in soybean cultivars with different phosphorus efficiencies under different phosphorus levels in Shenyang during 2006–2007. The results showed that the soybean cultivars with high phosphorus efficiency had higher seed yields and higher seed phosphorus efficiency at each of the three phosphorus levels. Under phosphate deficiency condition, the cultivars with high phosphorus efficiency had a higher photosynthesis and CO2 assimilation capacity, as well as higher soluble protein content, lower stomatae restriction and higher yield. The contents of chlorophyll, soluble protein, net photosynthetic rate, stomatal conductance and mesophyll conductance all reached the peak at the podding stage, and then descended. Growth rate, Leaf area duration (LAD) and net assimilation rate showed a rapid increase during the podding and grain- filling stages. The soybean cultivars with high phosphorus efficiency had higher net photosynthetic rate and growth indices at both the single plant and population levels, and had a small response to the change of phosphorus concentration. The main reason was that the phosphorus in the plants could be balanced by more absorption of phosphorus under low phosphorus situation, which could ensure a stronger photosynthesis.

Key words: Soybean, Phosphorus efficiency, Photosynthetic traits

[1] Peng Z-P(彭正萍), Li C-J(李春俭), Men M-X(门明新). Effects of P deficiency on photosynthetic characters and yield in two wheat cultivars with different spike types. Acta Agron Sin (作物学报), 2004, 30(8): 739–744(in Chinese with English abstract)
[2] Ae N, Arihara J, Okada K. Phosphorus uptake by pigeon pea and its role in cropping system of the India Subcontinent. Science, 1990, 248: 477–480
[3] Yan X-L(严小龙), Zhang F-S(张福锁). Genetics of Plant Nutrition (植物营养遗传学). Beijing: China Agriculture Press, 1997(in Chinese)
[4] Cao A-Q(曹爱琴), Yan X-L(严小龙). Adaptation of soybean root architecture under different P conditions. J South China Agric Univ (华南农业大学学报), 2001, 22(1): 92(in Chinese)
[5] Gerloff G C, Gabelman W H. Genetic Basis of Inorganic Plant Nutrition. In: Lauchli A, Bieleski R L, eds. Encyclopedia of Plant Physiology. Berlin: Springer-Verlag, 1983. Vol. 15B, 453–480
[6] Ding Y-C(丁玉川), Chen M-C(陈明昌), Cheng B(程滨), Li L-J(李丽君). Effect of different phosphorus levels on plant growth and development of soybean. J Shanxi Agric Sci (山西农业科学), 2006, 34(1): 47–49(in Chinese with English abstract)
[7] Muchhal U S, Raghothama K G. Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA, 1999, 96: 5868–5872
[8] Gourley J P, Allan D L, Russelle M P. Plant nutrient efficiency: A comparison of definitions and suggested improvement. Plant Soil, 1994, 158: 29–37
[9] Li Z-G(李志刚), Xie F-T(谢甫绨), Song S-H(宋书宏). The selection of high phosphorus using efficient soybean genotype. Chin Agric Sci Bull (中国农学通报), 2004, 20(5): 126–129(in Chinese with English abstract)
[10] Xiao K(肖凯), Gu J-T(谷俊涛), Zou D-H(邹定辉), Zhang R-X(张荣铣) , Qian W-P(钱维朴). Studies on photosynthetic carbon assimilating properties of hybrid wheats and their parents. Acta Agron Sin (作物学报), 1999, 25(3): 381–388(in Chinese with English abstract)
[11] You M-A(游明安), Gai J-Y(盖钧镒), Ma Y-H(马育华). Relationship of leaf photosynthetic rate with stomatal and mesophyll conductance in soybean. Acta Agron Sin (作物学报), 1995, 21(2): 145–149(in Chinese with English abstract)
[12] Zhang X-Z(张宪政). Detection of chlorophyll content in plant tissue. Liaoning Agric Sci (辽宁农业科学), 1986, (3): 19–21(in Chinese)
[13] Read S M, Northcote D H. Minimization of variation in the response to different protein of the coomassie blue G dye-binding: Assay for protein. Anal Biochen, 1981, 116: 53–64
[14] Nanjing Agricultural University(南京农业大学). Analysis of Soil Agricultural Chemistry (土壤农化分析). Beijing: China Agriculture Press, 1994. pp 268–270 (in Chinese)
[15] Tong X-J(童学军), Yan X-L(严小龙), Li H-Z(李惠珍), Lu Y-G(卢永根), Zhang W-X(章文贤). Studies on characteristics of phosphorus efficiency of soybean genotypes and relationship between those and some morphological, physiological traits. J Fujian Teach Univ (Nat Sci)(福建师范大学学报×自然科学), 2000, 16(1): 84–88(in Chinese with English abstract)
[16] Zhao C-J(赵春江). Research on Information Standards for Digital Agriculture-Crops (数字农业信息标准研究-作物卷). Beijing: China Agriculture Press, 2004. pp 356–370(in Chinese)
[17] Bjorn M, Kebede H, Rilling C. Photosynthetic differences among Lycopersicon species and Triticum aestivum cultivars. Crop Sci, 1994, 34: 113–118
[18] Pan X-H(潘晓华), Shi Q-H(石庆华), Guo J-Y(郭进耀), Wang Y-R(王永锐). Advance in the study of effects of inorganic phosphate on plant leaf photosynthesis and its mechanism. Plant Nutr Fer Sci (植物营养与肥料学报), 1997, 3(3): 201–208(in Chinese with English abstract)
[19] Usuda H, Shimogawara K. Phosphate deficiency in maize. Ι. Leaf phosphate status, growth, photosynthesis and carbon partitioning. Plant Cell Physiol, 1991, 32: 497–504
[20] Zhang J-H(张建恒), Li B-X(李宾兴), Wang B(王斌), Guo C-J(郭程谨), Li Y-M(李雁鸣), Xiao K(肖凯). Studies on the characteristics of photosynthesis and dry matter production in wheat varieties with different P efficiency. Sci Agric Sin (中国农业科学), 2006, 39(11): 2200–2207(in Chinese with English abstract)
[21] Raven J A, Glidwell S M, Johnson C B. Process Liming Photosynthetic Conductance. In: Physiological Process Limiting Plant Productivity. London: Butterworths, 1981. pp 109–136
[22] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 1982, 33: 317–345
[23] Xu D-Q(许大全), Ding Y(丁勇), Wu H(武海). Relationships between diurnal variations of photosynthetic efficiency and midday depression of photosynthetic rate in wheat leaves under field condition. Acta Phytophysiol Sin (植物生理与分子生物学学报), 1992, 18(3): 279–284(in Chinese with English abstract)
[24] Cao L-M(曹黎明), Pan X-H(潘晓华). Analysis of some indexes used for evaluating tolerance of different rice genotypes to low phosphorus treatment in sand culture. Acta Agric Shanghai (上海农业学报), 2000, 16(4): 31–34(in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[6] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[7] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[8] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[9] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!