欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 597-601.doi: 10.3724/SP.J.1006.2009.00597

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻抗条纹叶枯病基因Stv-bi的分子标记辅助选择

陈峰1,周继华23,张士永1,严长杰2,朱文银1,孙亚伟2,袁守江1,杨连群1*   

  1. 1山东省水稻研究所,山东济宁272177;2扬州大学教育部植物基因组学重点实验室,江苏扬州225009;3上海农业科学院作物育种栽培研究所,上海201106
  • 收稿日期:2008-08-11 修回日期:2008-12-08 出版日期:2009-04-12 网络出版日期:2009-02-13
  • 通讯作者: 杨连群
  • 基金资助:

    本研究由山东省农业科学院高新技术自主创新基金(2006YCX009和2007YCX007),江苏省高校重点实验室开放课题(K06001),山东省农业良种工程项目(2007LZ006-02),国家科技支撑计划项目(2006BAD01A01-5)资助。

Marker-assisted Selection for Stv-bi Gene Controlling Resistance to Rice Stripe Disease

CHEN Feng1,ZHOU Ji-Hua23,ZHANG Shi-Yong1,YAN Chang-Jie2,ZHU Wen-Yin1,SUN Ya-Wei2,YUAN Shou-Jiang1,YANG Lian-Qun1*   

  1. 1Shandong Rice Research Institute,Jining 272177,China;2Key Laboratory for Plant Functional Genomics,Ministry of education/Agricultural College,Yangzhou University,Yangzhou 225009,China;3Crop Breeding and Cultivation Reserch Institute, Shanghai Academy of Agricultural Sciences,Shanghai 201106,China
  • Received:2008-08-11 Revised:2008-12-08 Published:2009-04-12 Published online:2009-02-13
  • Contact: YANG Lian-Qun

摘要:

水稻条纹叶枯病是我国黄淮及长江流域粳稻区重要的病害。由于水稻条纹叶枯病的发病受外界条件影响较大,人工接种抗性鉴定比较困难,利用与抗病基因紧密连锁的分子标记进行标记辅助选择对提高抗性育种效率具有重要意义。来自籼稻抗源ModanStv-bi是水稻育种中广泛应用的条纹叶枯病抗性基因。本研究设计了与Stv-bi紧密连锁的SSRSTS分子标记,3个抗条纹叶枯病混合群体F30718(圣稻13/镇稻88)F50701(武优34/T022//圣稻806)F60702 (V6/T022//镇稻88)进行分子标记检测和田间条纹叶枯病抗性鉴定,结果的符合率分别为99.3%87.7%91.8%。表明这些分子标记可以用于条纹叶枯病抗性基因Stv-bi分子标记辅助选择。

关键词: 水稻, 条纹叶枯病, 分子标记, 育种

Abstract:

Rice stripe disease is one of the most serious viral diseases in Huang-Huai and Yangtze River japonica cultivating area in China, and has caused severe loss in rice production. The pathogen is rice stripe virus (RSV) and transmitted by the small brown plant-hopper, Laodelphax striatellus Fallen. Moreover, rice stripe disease is difficult to assess by the way of artificial inoculation, and easily affected by natural conditions, thereby marker-assisted selection using molecular markers closely linked to disease-resistant gene to improve the efficiency of resistance breeding programs is of great significance. At present, Stv-bi is a widely utilized resistant gene for stripe virus disease in rice breeding that came from indica variety Modan, and Stv-bi has been fine mapped on chromosome 11. In this study, eight molecular markers, including three SSR (Simple Sequence Repeat) and five STS (Sequence-tagged Sites), closely linked to Stv-bi, were developed and displayed polymorphic between Shengdao 13 and Zhendao 88. Among them, three markers, H21, H11-8 and H11-12 were subsequently used for marker-assisted selection. The individual seedlings of three compound breeding populations, F30718 (Shengdao 13/Zhendao 88), F50701 (Wuyou 34/T022//Shengdao 806), and F60702 (V6/T022//Zhendao 88) were genotyped with molecular markers H21, H11-8 and H11-12. The lines from these populations checked by marker-assisted selection to rice strip disease were also investigated under field conditions at next generation. The consistency between field performance and the marker genotype in the three compound breeding populations was 99.3%, 87.7%, and 91.8%, respectively. The results indicated that these molecular markers can be applied for marker-assisted selection in the improvement of resistance to RSV.

Key words: Rice, Stripe virus disease, Molecular marker, Breeding

[1] Wang C-L(王才林). Advances in breeding of rice with resistance to rice stripe disease in Jiangsu, China. Jiangsu Agric Sci (江苏农业科学), 2006, (3): 1–5(in Chinese)
[2] Gao L-C(高苓昌), Song K-Q(宋克勤), Zhang H-R(张洪瑞), Du B-H(杜本怀), Zhu Q-S(朱其松). Pathogeny feature and integrate control of rice strip blight in Huang-Huai rice area. Shangdong Agric Sci (山东农业科学), 2006, (3): 66–67(in Chinese)
[3] Wang C-L(王才林), Zhang Y-D(张亚东), Zhu Z(朱镇), Zhao L(赵凌), Chen T(陈涛). Rice breeding for resistance to stripe virus disease. Acta Agron Sin (作物学报), 2008, 34(3): 530–533(in Chinese with English abstract)
[4] Pan X-B(潘学彪), Liang G-H(梁国华), Chen Z-X(陈宗祥), Zhang Y-F(张亚芳). Breeding strategy on resistance to rice stripe in Jiangsu. Jiangsu Agric Sci (江苏农业科学), 2005, (5): 22–23(in Chinese)
[5] Hayano-Saito Y, Tsuji T, Fujii K, Saito K, Iwasaki M, Saito A. Localization of the rice stripe disease resistance gene, Stv-bi, by graphical genotyping and linkage analyses with molecular markers. Theor Appl Genet, 1998, 96: 1044–1049
[6] Hayano-Saito Y, Saito K, Nakamura S. Kawasaki S, Iwasaki M. Fine physical mapping of the rice stripe resistance gene locus, Stvb-i. Theor Appl Genet, 2000, 101: 59–63
[7] Wu S J, Zhong H, Zhou Y, Zuo H, Zhou L H, Zhu J Y, Ji C Q, Gu S L, Gu M H, Liang G H. Identification of QTLs for the resistance to rice stripe virus in the indica rice variety Dular. Euphytica, 2009, 165: 557–565
[8] Wang C-F(王春芳), Yan C-J(严长杰), Liang G-H(梁国华), Dong X-S(董学锁), Yu H-X(于恒秀), Gu M-H(顾铭洪). Construction and characteristic analysis of rice clonally propagated F2 population. J Yangzhou Univ (Agric&Life Sci Edn) (扬州大学学报·农业与生命科学版), 2002, 23(2): 41–45(in Chinese with English abstract)
[9] Ding X-L (丁秀兰), Jiang L(江玲), Liu S-J(刘世家), Wang C-M(王春明), Chen L-M(陈亮明), Cheng Z-B(程兆榜) , Fan Y-J(范永坚), Zhou Y-J(周益军), Wan J-M(万建民) . QTL analysis for rice stripe disease resistance gene using recombinant inbred lines (RILs) derived from crossing of Kin maze and DV85. Acta Genet Sin (遗传学报), 2004, 31(3): 287–292(in Chinese with English abstract)
[10] Ding X-L(丁秀兰), Jiang L(江玲), Zhang Y-X(张迎信), Sun D-Z(孙黛珍), Zhai H-Q(翟虎渠), Wan J-M(万建民). Detection and analysis of QTL for resistance to stripe disease in rice , using backcross inbred lines, Acta Agron Sin (作物学报), 2005, 38(5): 1041–1046(in Chinese with English abstract)
[11] Maeda H, Sugisawa T, Nemoto H, Sunohara Y. QTL analysis for rice stripe resistance in the Japanese upland rice kanto 72, Breed Sci, 2004, 54: 19–26
[12] Gong D-Y(宫德英), Chen F(陈峰), Zhang S-Y(张士永), Yuan S-J(袁守江), Yang L-Q(杨连群), Sang M-P(桑茂鹏). Breeding and cultivation technology of a new rice cultivar Shengdao 13. Shangdong Agric Sci (山东农业科学), 2007, (5):113–114(in Chinese)
[13] Washio O, Ezuka A, Toriyama K, Sakurai Y. Testing method for genetics and breeding for resistance to rice stripe disease. Bull Chugoku Agric Exp Stn, 1968, 16: 39–197
[14] Sugiura N, Tsuji T, Fujii K, Kato T, Saka N, Touyama T, Hayano-Saito Y, Izawa T. Molecular marker-assisted selection in a recurrent backcross breeding for the incorporation of resistance to rice stripe virus and panicle blast in rice (Oryza sativa L.). Breed Res, 2004, 6: 143–148(in Japanese with English abstract)
[15] Hayano-Saito Y, Saito K, Fujii K, Touyama T, Tsuji T, Sugiura N, Izawa T, Iwasaki M. SCAR marker for selection of the rice stripe resistance gene Stvb-i. J Breed Res, 2000, 2: 67–72 (in Japanese with English abstract)
[16] Sun L-J (孙林静), Ma Z-Y(马忠友), Su J-P(苏京平), Liu X-J(刘学军), Wang C-M(王春敏), Wang S-J(王胜军), Yan S-Y(闫双勇). Detection of the rice stripe disease resistance gene Stvb-i by molecular marker. Tianjin Agric Sci (天津农业科学), 2007, 13(3): 9–11(in Chinese with English abstract)
[17] Sun D-Z(孙黛珍), Jiang L(江玲), Zhang Y-X(张迎信), Cheng X-N(程遐年), Zhai H-Q(翟虎渠), Wan J-M(万建民). Detection of QTL associated with rice stripe resistance in cultivar IR24. Acta Agron Sin (作物学报), 2007, 33(1): 25–30(in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!