欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 958-961.doi: 10.3724/SP.J.1006.2009.00958

• 研究简报 • 上一篇    下一篇

玉米简单重复序列不对等交换的热点区域定位

汤继华12,马西青1,滕文涛1,严建兵1,戴景瑞1,李建生1*   

  1. 1中国农业大学国家玉米改良中心,北京100193;2河南农业大学农学院,河南郑州450002
  • 收稿日期:2008-09-19 修回日期:2008-12-15 出版日期:2009-05-12 网络出版日期:2009-02-16
  • 通讯作者: 李建生
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)重大专项(2006AA100103)资助。

Mapping Unequal Crossing Over Hotspot Region of Simple sequence Repeat in Maize

TANG Ji-Hua12,MA Xi-Qing1,TENG Wen-Tao1,YAN Jian-Bing1,DAI Jing-Rui1,LI Jian-Sheng1*   

  1. 1National Maize Improvement Center of China,China Agricultural University,Beijing 100193,China;2College of Agronmy.Hernan Agricultural University,Zhengzhou 450002,China
  • Received:2008-09-19 Revised:2008-12-15 Published:2009-05-12 Published online:2009-02-16
  • Contact: LI Jian-Sheng

摘要:

生物基因组中简单重复序列的多态性是同源染色体不对等交换的结果之一,因此明确不对等交换的热点区域具有重要的理论意义。利用来源于优良玉米杂交种豫玉22的一套重组近交系(RIL)群体,对其遗传组成进行了SSR标记分析,发现40个不对等交换的SSR标记,不对等交换在群体间发生的概率介于0.34%~14.63%之间,每世代发生的频率为10-2~10-1,其中(AG)n重复的标记占发生不对等交换总标记的58.3%31个不对等交换标记分布于染色体上的11个热点区域,位于第9染色体以外的其它染色体上,其中第3和第5染色体上各分布2个不对等交换的热点区域。

关键词: 玉米, 简单重复序列(SSR), 不对等交换, 热点区域

Abstract:

The polymorphism of simple sequence repeat (SSR) in biological genome is one result of unequal crossing over for homologous chromosomes; therefore it has theoretical importance in clarifying the hotspot regions of unequal crossing over. A set of recombinant inbred lines (RILs) population that derived form an elite hybrid Yuyu 22 was used in this study, its genetic components of the population was analyzed by means of SSR analysis, and 40 unequal crossing over SSR markers were found. The frequency of the unequal crossing over in the RIL population was 0.34–14.63%, with 10-2–10-1 frequency per generation, and the (AG)n repeat SSR markers accounted for 58.3%. There were 31 unequal crossing over markers locating on 11 chromosomal hotspot regions, distributing on 10 chromosomes except for chromosome 9, including two unequal crossing over hotspot regions each in chromosomes 3 and 5.

Key words: Maize, Simple sequence repeat(SSR), Unequal crossing over, Hotspot region

[1] Civardi L, Xia Y, Edwards K J, Schnable P S, Nikolau B J. The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc Natl Acad Sci USA, 1994, 91: 8268–8272
[2] Sturtevant A H. The effects of unequal crossing over at the bar locus in Drosophila. Genetics, 1925, 10: 117–147
[3] Sturtevant A H, Morgan T H. Reverse mutation of the bar gene correlated with crossing over. Science, 1923, 57: 746–747
[4] Tusié-Luna M T, White P C. Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms. Proc Natl Acad Sci USA, 1995, 92: 10796–10800
[5] Baumer A, Dutly F, Balmer D, Riegel M, Tükel T, Krajewska-Walasek M, Schinzel A A. High level of unequal meiotic crossovers at the origin of the 22q11.2 and 7q11.23 deletions. Human Mol Genet, 1998, 7: 887–894
[6] Webb C A, Richter T E, Collins N C, Nicolas M, Trick H N, Pryor T, Hulbert. Genetic and molecular characterization of the maize rp3 rust resistance locus. Genetics, 2002, 162: 381–394
[7] Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell, 1999, 11: 1365–1376
[8] Silver L M, White M, Artzt K. Evidence for unequal crossing over within the mouse T/t complex. Proc Natl Acad Sci USA, 1980, 77: 6077–6080
[9] Adams K L, Wendel J F. Polyploidy and genome evolution in plants. Curr Opin Plant Biol, 2005, 8: 135–141
[10] Lockton S, Gaut B S. Plant conserved non-coding sequences and paralogue evolution. Trends Genet, 2005, 21: 60–65
[11] Zhang L, Gaut B S. Does recombination shape the distribution and evolution of tandemly arrayed genes (TAGs) in the Arabidopsis thaliana genome? Genome Res, 2003, 13: 2533–2540
[12] Goodfellow P N. Variation in now the theme. Nature, 1992, 359: 777–778
[13] Powell W, Machray G C, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci, 1996, 1: 215–222
[14] Jeffreys A J, Wilson V, Thein S L. Hypervariable “minisatellite” regions in human DNA. Nature, 1985, 314: 67–73
[15] Crow J F, William F D. Anecdotal, historical and critical commentaries on genetics: unequal crossing over then and now. Genetics, 1988, 120: 1–6
[16] Walsh J B. Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics, 1987, 115: 553–567
[17] Sia E A, Jinks-Robertson S, Petes T. Genetic control of microsatellite stability. Mutat Res, 1997, 383: 61–70
[18] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018
[19] Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0. Cambridge: Whitehead Institute Technical Report, 1992
[20] Yan J-B(严建兵), Tang H(汤华), Huang Y-Q(黄益勤), Zheng Y-L(郑用琏), Li J-S(李建生). Genetic analysis of segregation distortion of molecular markers in maize F2 population. Acta Genet Sin (遗传学报), 2003, 30(10): 913–918 (in Chinese with English abstract)
[21] Tang J H, Ma X Q, Yan J B, Teng W T, Wu W R, Dai J R, Li J S. The QTL and heterotic detection loci for plant height using an immortalized F2 population in maize. Chin Sci Bull, 2007, 51(24): 2864–2869
[22] Udupa S M, Robertson L D, Weigand F, Baum M, Kahl G. Allelic variation at (TAA)n microsatellite loci in a world collection of chickpea (Cicer arietinum L.) germplasm. Mol Gen Genet, 1999, 261: 354–363
[23] Schug M D, Mackay T F C, Aquadro C F. Low mutation rates of microsatellite loci in Drosophila lanogaster. Nat Genet, 1997, 15: 99–102
[24] Xu X, Peng M, Fang Z, Xu X. The direction of microsatellite mutations is dependent upon the allele length. Nat Genet, 2000, 24: 396–399
[25] Eisen J A. Mechanistic basis for microsatellite instability. In: Goldstein D B, Schl?tterer C, eds. Microsatellites—evolution and applications. Oxford: Oxford University Press, 1999. pp 34–48
[26] Kermicle J K, Eggleston W B, Alleman M. Organization of paramutagenicity in R-stipples maize. Genetics, 1995, 141: 361–372
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!