欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 974-982.

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用双向导入群体检测遗传背景对耐盐QTL定位的影响

杨静12,孙勇2,程立锐2,周 政2,王韵2,朱苓华2,苍晶1,徐建龙2*,黎志康23   

  1. 1东北农业大学生命科学学院,黑龙江哈尔滨150030;2中国农业科学院作物科学研究所/农作物基因资源与遗传改良国家重点科学工程,北京100081;3 International Rice Research Institute,DAPO Box 777,Metro Manila,Philippines
  • 收稿日期:2009-01-05 修回日期:2009-03-20 出版日期:2009-06-12 网络出版日期:2009-04-20
  • 通讯作者: 徐建龙,E-mail:xujl@caas.net.cn
  • 基金资助:

    本研究由国家自然科学基金(30570996)项目和引进国际先进农业科学技术计划(948计划)项目(2004-Z18)资助。

Genetic Background Effect on QTL Mapping for Salt Tolerance Revealed by a Set of Reciprocal Introgression Line Populations in Rice

YANG Jing1,SUN Yong2,CHENG Li-Rui2,ZHOU Zheng2,WANG Yun2,ZHU Ling-Hua2,CANG Jing1,XU Jian-Long2*,LI Zhi-Kang23   

  1. 1College of Life Science,Northeast Agricultural University,Harbin 150030,China;2 Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement,Chinese Academy of Agricultural Sciences,Beijing 100081,China;3 International Rice Research Institute,DAPO Box 777,Metro Manila,Philippines
  • Received:2009-01-05 Revised:2009-03-20 Published:2009-06-12 Published online:2009-04-20
  • Contact: XU Jian-Long,E-mail:xujl@caas.net.cn

摘要:

以优质粳稻品种Lemont与高产籼稻品种特青为亲本培育的高代双向回交导入系为材料,在温室140 mmol L-1 NaCl胁迫条件下定位影响苗期叶片盐害级别(SST)、幼苗存活天数(SDS)、地上部K+浓度(SKC)和地上部Na+浓度(SNC)及人工气候室条件下影响地上部K+Na+浓度的QTL双向导入系的大部分遗传背景与各自的受体亲本相同,其中Lemont背景导入系中轮回亲本Lemont的基因组平均占83.8%,特青背景导入系中轮回亲本特青基因组平均占88.9%。各耐盐相关性状在两个背景群体中均出现超亲分离,多数性状的频率分布呈相互重叠状态,表明双亲作为供体相互导入各耐盐性状基因的效应大致相当。两个背景导入系群体中分别检测到影响上述耐盐相关性状的QTL18个,同一性状在两个背景导入系中未能检测到任何相同表达的QTL,表明耐盐QTL表达具有很强的遗传背景效应,同时也说明这些耐盐QTL的效应可能较小。温室和人工气候室两种环境下仅在特青背景导入系中检测到1个影响SKC的相同QTL,表明耐盐QTL与环境的互作非常明显。虽然双亲均表现中等感盐,但QTL定位结果表明双亲中都存在一些提高耐盐相关性状的有利等位基因。研究认为,利用分子标记技术挖掘隐蔽于育成品种中的耐盐基因,进一步利用分子标记辅助选择技术对这些非等位耐盐基因进行聚合,完全有可能提高育成品种的耐盐水平。

关键词: 水稻, 耐盐QTL, 遗传背景, 基因发掘, 标记辅助选择

Abstract:

QTLs for salt tolerance (ST) related traits including score of salt toxicity of leaves (SST), survival days of seedlings (SDS), shoot K+ concentration (SKC) and shoot Na+ concentration (SNC) were detected using the reciprocal introgression lines (ILs) derived from a cross between japonica variety “Lemont” and indica variety “Teqing” under salt stress treatment with the concentration of 140 mmol L-1 NaCL in green house and phytotron. Both genetic backgrounds of the two sets of ILs were similar to their respective parents. On the average, Lemont genome accounted for 83.8% in Lemont background-ILs whereas 88.9% of Teqing genome in Teqing background-ILs. Continuous variation and transgressive segregation for all ST-related traits were observed in the two IL populations with overlaps of frequency distributions for most traits, suggesting the gene effect of reciprocal introgression of the two parents on each ST-related trait was almost equivalent. Eighteen QTLs for all ST-related traits were identified for each of the two IL populations. No any a common QTL for the same trait was detected in the reciprocal IL populations, indicating there was a strong genetic background effect on expression of ST-QTLs, and also suggesting these ST-QTLs had relatively small phenotypic effect. Only one common QTL affecting SKC was identified in Teqing background-ILs under green house and phototron environments, indicating there was a strong interaction of ST-QTL with environment. Although the two parents are moderately susceptible to salt stress, QTL mapping results indicated that some favorable alleles beneficial to improvement of ST-related traits do exist in the parents. Therefore, it is possible to develop a new variety with improved ST by identifying and mining this kind of “hidden” ST-genes existed in the modern varieties through molecular marker technology and further pyramiding these non-allelic alleles via marker-assisted selection.

Key words: Rice, Salt-tolerant QTL, Genetic background, Gene mining, Marker-assisted selection

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!