作物学报 ›› 2009, Vol. 35 ›› Issue (6): 983-991.doi: 10.3724/SP.J.1006.2009.00983
吴永升1,2,李新海1,郝转芳1,张世煌1,谢传晓1,*
WU Yong-Sheng12,LI Xin-Hai1,HAO Zhuan-Fang1,ZHANG Shi-Huang1,XIE Chuan-Xiao1*
摘要:
本研究旨在分离玉米谷氨酰胺合成酶(GS)家族重要成员Gln1-4 gDNA序列全长,分析基因结构、保守功能域与自然等位变异,为氮利用效率功能位点关联性分析奠定基础。利用PCR步移(walking)方法分离Gln1-4基因区域基因组DNA序列,用生物信息学方法分析基因结构与保守功能域,测序与序列比对法分析重要区域自然等位变异。结果表明,分离得到自交系Mo17 Gln1-4区域gDNA 3 724 bp,起始密码子至终止密码子序列长2 858 bp,登录到GenBank (登录号为EU369651), 并注释。Gln1-4基因含10个外显子与9个内含子,18个剪接位点均为保守的5'供位GU与3'受位AG模式。编码的GS蛋白由356个氨基酸组成,分子量39.2 kD,等电点(pI)为5.202。氨基末端外显子2到外显子6为氨离子结合结构保守功能域;羧基末端外显子8与外显子9构成ATP酶活性保守功能域。Gln1-4与Gln1-3基因相比,在DNA序列、氨基酸序列、基因结构、保守功能域均很保守,氨基酸序列一致性达98.31%。52个玉米自交系的Gln1-4等位变异分析中,共鉴定出318个等位变异位点,其中242个SNP,45个Indels,占90%。该基因氮利用效率功能关联性分析区间应位于氨离子结合功能域与ATPase活性保守功能域中重要的变异位点,18个剪接位点。
[1] Cassman K G. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA, 1999, 96: 5952-5959 [2] William R R, Gordon V J. Improving nitrogen use efficiency for cereal production. Agron J, 1999, 91: 357-363 [3] Zhang W-L(张维理), Wu S-X(武淑霞), Ji H-J(冀宏杰), Kolbe H. Estimation of agricultural non-point source pollution in China and the alleviating strategies: I. Estimation of agricultural non-point source pollution in China in early 21 century. Sci Agric Sin (中国农业科学), 2004, 37(7): 1008-1017 (in Chinese with English abstract) [4] Sun Z-M(孙志梅), Wu Z-J(武志杰), Chen L-J(陈利军), Liu Y-G(刘永刚). Research advances in nitrogen fertilization and its environmental effects. Chin J Soil Sci (土壤通报), 2006, 37(4): 782-786(in Chinese with English abstract) [5] Hirel B, Berlin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in Maize. Plant Physiol, 2001, 125: 1258-1270 [6] Gallais A, Hirel B. An approach of the genetics of nitrogen use efficiency in maize. J Exp Bot, 2004, 55: 295-306 [7] Coque M, Gallais A. Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theor Appl Genet, 2006, 112: 1205-1220 [8] Li M G, Villemur R, Hussey P J, Silflow C D, Gantt J S, Snustad D P. Differential expression of six glutamine synthetase genes in Zea mays. Plant Mol Biol,1993, 23: 401-440 [9] Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot, 2002, 53: 979-987 [10] Gallais A, Coque M. Genetic variation and selection for nitrogen use efficiency in maize: A synthesis. Maydica, 2005, 50: 531-537 [11] Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18: 3252-3274 [12] Wu Y-S(吴永升), Li X-H(李新海), Zhang Z(张征), Li M-S(李明顺), Hao Z-F(郝转芳), Zhang S-H(张世煌), Xie C-X(谢传晓).Genomic DNA sequence, gene structure, conserved domains, and natural alleles of gln1-3 gene in maize. Acta Agron Sin (作物学报), 2008, 34(7): 1114-1120 (in Chinese with English abstract) [13] Saghai-Maroof M A, Soliman K, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018 [14] Jones D H, Winistorfer S C. Genome walking with 2 to 4 kb steps using panhandle PCR. PCR Methods Appl,1993, 2: 197-203 [15] Sambrook J, Fritsch E F, Maniatis T, eds. Huang P-T(黄培堂) trans. Molecular Cloning: A Laboratory Manual (分子克隆实验指南). Beijing: Science Press, 2002. pp 103-105 (in Chinese) [16] Marchler-Bauer A, Anderson J B, Cherukuri P F, Deweese-Scott C, Geer L Y, Gwadz M, He S, Hurwitz D I, Jackson J D, Ke Z, Lanczycki C, Liebert C A, Liu C, Lu F, Marchler G H, Mullokandov M, Shoemaker B A, Simonyan V, Song J S, Thiessen P A, Yamashita R A, Yin J J, Zhang D, Bryant S H. CDD: a conserved domain database for protein classification. Nucl Acids Res, 2005, 33: 192-196 [17] Amanda C, Yang A P, Heather M, Rosalind C L, Nicola A. Ramsay. Identification of DNA sequences flanking T-DNA insertions by PCR-Walking. Plant Mol Biol Rep, 2001, 19: 321-327 [18] Peterman T K, Goodman H M. The glutamine synthetase gene family of Arabidopsis thaliana light-regulation and differential expression in leaves, roots and seeds. Mol Gen Genet, 1991, 230: 145-154 [19] Reddy A. Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol, 2007, 58: 267-294 [20] Xie C X, Warburton M L, Li M S, Li X H, Xiao M J, Hao Z F, Zhao Q, Zhang S H. An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breed, 2008, 21: 407-418 [21] Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286-289 [22] Jeppe R A, Tobias S, Albrecht E, M, Imad Z, Thomas L. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet, 2005, 111: 206-217 [23] Camus-Kulandaivelu L, Veyrieras J B, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A. Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics, 2006, 172: 2449-263 [24] Xie C-X(谢传晓), Wang Z-H(王振华), Yu L(於琍), Zhang W(张玮), Li M-S(李明顺), Li X-H(李新海), Cheng B-J(程备久), Zhang S-H(张世煌). Characterization of the sensitivity to photoperoid among 160 maize inbred lines. J Maize Sci (玉米科学), 2008, 16(3): 15-18 (in Chinese with English abstract) [25] Carlos E H, Torbert R R, Bai L, Thomas P B, Catherine B K, Stephen G S, Ann E S, Ratnakar V, Mark W, Eleanore T W, Yan J B, Edward S B. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 2008, 319: 330-333 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[13] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[14] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[15] | 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214. |
|