欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 998-1005.doi: 10.3724/SP.J.1006.2009.00998

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

野生二粒小麦导入普通小麦的抗白粉病基因MlWE29分子标记定位

张连松,华为,关海英,李根桥,张宏涛,解超杰,杨作民,孙其信,刘志勇*   

  1. 中国农业大学植物遗传育种系/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室,北京100193
  • 收稿日期:2008-12-22 修回日期:2009-01-05 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 刘志勇,E-mail:zhiyongliu@cau.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100102,2006AA10Z1E9,2006AA10Z1C4,2006BAD01A02),国家自然科学基金项目(30425039和30771341),教育部长江学者和创新团队发展计划项目,高等学校学科创新引智计划项目(111-2-03)资助。

Molecular Mapping of Powdery Mildew Resistance Gene MlWE29 in Wheat Originated from Wild Emmer(Triticum turgidum var.dicoccoides)

ZHANG Lian-Song,HUA Wei,GUAN Hai-Ying,LI Gen-Qiao,ZHANG Hong-Tao,XIE Chao-Jie,YANG Zuo-Min,SUN Qi-Xin,LIU Zhi-Yong*   

  1. Department of Plant Genetics & Breeding,China Agricultural University/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Genomics and Genetic Improvement,Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Resarch & Utilization,Ministry of Education,Beijing 100094,China
  • Received:2008-12-22 Revised:2009-01-05 Published:2009-06-12 Published online:2009-04-16
  • Contact: LIU Zhi-Yong,E-mail:zhiyongliu@cau.edu.cn

摘要:

小麦白粉病是严重影响小麦生产的重要病害之一,培育和应用抗病品种是有效控制和减少病害的最经济有效的方法。野生二粒小麦是硬粒小麦和普通小麦的四倍体野生祖先种,是小麦抗病性遗传改良的重要基因资源。本研究利用来自以色列的野生二粒小麦WE29与普通小麦杂交,再用普通小麦连续回交和自交,育成高抗白粉病(Blumeria graminis f. sp. tritici)小麦新品系3D258(系谱为燕大1817/WE29//5*87-1, BC4F6)。将3D258和高感小麦白粉病的普通小麦品种薛早配制杂交组合,对其F1、F2代分离群体和F3代家系进行白粉病抗性鉴定和遗传分析。结果表明3D258携带抗白粉病显性单基因,暂命名为MlWE29。利用集群分离分析法(BSA)和分子标记分析,发现6个SSR标记(Xgwm335、Xgwm213、Xgwm639、Xwmc415、Xwmc289Xwmc75)和5个EST-STS标记(BE494426、BE442763、CD452476、BE445282BE407068)与抗白粉病基因MlWE29连锁。利用中国春缺体-四体系、双端体系和缺失系将抗白粉病基因MlWE29标记物理定位于5BL染色体的0.59–0.79区域。这一普通小麦抗白粉病种质资源的创制及其连锁分子标记的建立为小麦抗病基因分子标记辅助选择、基因积聚和分子育种提供了新的物质基础。

关键词: 白粉病, 野生二粒小麦, 抗白粉病基因, 分子标记

Abstract:

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in many regions in the world. Breeding for the resistance is the most economical and effective method for controlling this disease. Wild emmer (Triticum turgidum var. dicoccoides) is the immediate progenitor of cultivated tetraploid and hexaploid wheats and has been proven to be an important resource of disease resistance improvement. In this study, a common wheat line 3D258 with powdery mildew resistance was developed by crossing wild emmer accession WE29 with common wheat landrace Yanda1817 and backcrossing with common wheat line 87-1 (Yanda 1817/WE29//5*87-1, F6). Genetic analysis of the F2 population and their F3 families, developed from 3D258 and a susceptible common wheat cultivar Xuezao, indicated that the powdery mildew resistance in 3D258 was controlled by a single dominant gene, designated temporarily as MlWE29. Molecular markers and the bulked segregant analysis were used to characterize the powdery mildew resistance gene MlWE29. Six SSR markers (Xgwm335, Xgwm213, Xgwm639, Xwmc415, Xwmc289, and Xwmc75) and five EST-STS markers (BE494426, BE442763, CD452476, BE445282, and BE407068) were found to be linked to MlWE29. Using Chinese Spring nullisomic-tetrasomics, ditelosomics and deletion lines, MlWE29 was physically mapped on chromosome 5BL bin 0.59–0.79. The common wheat line 3D258 and its resistance gene linked molecular markers could be used in disease resistance genes pyramiding and marker-assisted selection in wheat breeding program.

Key words: Blumeriagraminis f.sp.tritici, Triticum turgidum var.dicoccoides, Powdery mildew resistance gene, Molecular markers


[1] McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J,Morris C, Somers D J, Appels R,Devos KM Catalogue of gene symbols for wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P, eds. Proc 11th Intl Wheat Genet Symp Sydney, Australia: Sydney University Press, 2008

[2] Röder M S, Korzun V, Wendehake K. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023

[3] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114

[4] Pestsova E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689-697

[5] Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet, 2005, 110: 550-560

[6] Gupta P K, Balyan H S, Edwards K J, Isaac P, Korzun V, Röder M, Gautier M F, Joudrier P, Schlatter A R, Dubcovsky J, De la Pena R C, Khairallah M, Penner G, Hayden M J, Sharp P, Keller B, Wang R C C, Hardouin J P, Jack P, Leroy P. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet, 2002, 105: 413-422

[7] Huang X Q, Röder M S. Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica, 2004, 137: 203-223

[8] Yao G Q, Zhang J L, Yang L L, Xu H X, Jiang Y M, Xiong L, Zhang C Q, Zhang Z Z, Ma Z Q, Sorrells M E. Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor Appl Genet, 2007,114: 351-358

[9] Feldman M, Millet E. Methodologies for identification, allocation and transfer of quantitative genes from wild emmer into cultivated wheat.In: Li Z S, Xin Z Y, eds. Proc 8th Intl Wheat Genet Symp. Beijing: China Agricultural Scientific and Technology Press, 1993. pp 19-27

[10] Nevo E, Beiles A. Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution, and application in breeding. Theor Appl Genet, 1989, 77: 421-455

[11] Moseman J G, Nevo E, El-Morshidy M A, Zohary D. Resistance of Triticum dicoccoides collected in Israel to infection with Erysiphe graminis tritici. Euphytica, 1984, 33: 41-47

[12] Xie C-J(解超杰), Sun Q-X(孙其信), Yang Z-M(杨作民). Resistance of wild emmers from Israel to wheat rusts and powdery mildew at seedling stage. J Triticeae Crops(麦类作物学报), 2003, 23(2): 39-42(in Chinese with English abstract)

[13] Levy AA, Feldman M. Increase in grain percentage in high-yielding common wheat breeding lines by genes from wild tetraploid wheat. Euphytica, 1987, 36:353-359

[14] Levy A A, Galili G, Feldman M. Polymorphism and genetic control of high molecular weight glutenin subunits in wild tetraploid wheat Triticum turgidum var. dicoccoides. Heredity, 1988, 61:63-72

[15] Nevo E, Payne P I. Wheat storage proteins: Diversity of HMW glutenin subunits in wild emmer from Israel. Theor Appl Genet, 1987, 74: 827-836

[16] Wang Z L, Li L H, He Z H, Duan X Y, Zhou Y L, Chen X M, Lillemo M, Singh R P, Wang H, Xia X C. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis, 2005, 89: 457-463

[17] Saghai-Maroof M A, Soliman K M, Jorgensen R A, AllardR W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018

[18] Lincoln S, Daly M, Lander E. Constructing Genetic Maps with Mapmaker/EXP3.0. Whitehead Institute Techn Rep, 3rd edn. Whitehead Institute, Cambridge, Masachussetts, USA. 1992

[19] Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract)

[20] Sourdille P, Singh S, Cadalen T, Brown, Guedira G L, Gay G, Qi L L, Gill B S, Dufour P, Murigneux A, Bernard M. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funt Integr Genomics, 2004, 4: 12-25

[21] Sorrells M E, LaRota M, Bermudez-Kandianis C E.Comparative DNA sequence analysis of wheat and rice genomes. Genome Res, 2003, 13: 1818-1827

[22] Draper J, Mur L A J, Jenkins G. Brachypodium distachyon: A new model system for functional genomics in grasses. Plant Physiol, 2001, 127: 1539-1555

[23] Reader M, Miller T E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica, 1991, 53: 57-60

[24] Chen X M, Luo Y H, Xia X C, Xia L Q, Chen X, Ren Z L, He Z H, Jia J Z. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed, 2005, 124: 225-228

[25] Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000, 115: 121-126

[26] Liu Z Y, Sun Q X, Ni Z F, Nevo E, Yang TM.Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 2002, 123: 21-29

[27] Mohler V, Zeller F J, Wenzel G, Hsam S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 9 gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 2005, 142: 161-167

[28] Ji X L, Xie C J, Ni Z F, Yang T M, Nevo E, Fahima T, Liu Z Y, Sun Q X Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica,2007, 159: 385-390

[29] Wang C-Y(王长有), Ji W-Q(吉万全), Zhang G-S(张改生), Wang Q-Y(王秋英), Cai D-M(蔡东明), Xue X-Z(薛秀庄). SSR markers and preliminary chromosomal location of a powdery mildew resistance gene in common wheat germplasm N9134. Acta Agron Sin (作物学报), 2007, 33(1): 163-166 (in Chinese with English abstract)

[30] Blanco A, Gadaleta A, Cenci A, Carluccio A V, Abdelbacki A M M, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet, 2008, 116: 417-425
[1] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[2] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[3] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[4] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[5] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[6] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[7] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[8] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[9] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[10] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[11] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[12] 李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(4): 513-519.
[13] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[14] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[15] 牟碧涛,赵卓凡,岳灵,李川,张钧,李章波,申汉,曹墨菊. 两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位[J]. 作物学报, 2019, 45(2): 225-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!