欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1181-1187.doi: 10.3724/SP.J.1006.2009.01181

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦盐胁迫相关基因TaMYB32的克隆与分析

张立超,赵光耀,贾继增,孔秀英*   

  1. 中国农业科学院作物科学研究所/农作物基因资源与基因改良重大科学工程/农业部种质资源与生物技术重点开放实验室,北京100081
  • 收稿日期:2009-02-06 修回日期:2009-03-14 出版日期:2009-07-12 网络出版日期:2009-05-18
  • 通讯作者: 孔秀英,E-mail:xykong@mail.caas.net.cn
  • 基金资助:

    本研究由引进先进农业科学技术计划(948计划)项目(2005-Z47)资助。

Cloning and Analysis of a Salt Stress Related Gene TaMYB32 in Wheat

ZHANG Li-Chao,ZHAO Guang-Yao,JIA Ji-Zeng,KONG Xiu-Ying*   

  1. Key Laboratory of Crop Germplasm and Biotechnology,Ministry of Agriculture/Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences,Chinese Academy of Agricultural Sciences Beijing 100081,China
  • Received:2009-02-06 Revised:2009-03-14 Published:2009-07-12 Published online:2009-05-18
  • Contact: KONG Xiu-Jing,E-mail:xykong@mail.caas.net.cn

摘要:

在对小麦全长cDNA克隆进行大规模测序及转录因子功能研究中,筛选到一个盐胁迫相关的MYB转录因子基因,将其命名为TaMYB32TaMYB32的全长cDNA序列为1250 bp,开放阅读框为732 bp,编码一个具有244个氨基酸的R2R3-MYB转录因子。根据该基因的cDNA序列设计引物,分别在小麦二倍体祖先种乌拉尔图小麦UR206、拟斯卑尔脱山羊草Y2006和粗山羊草Y2282以及六倍体普通小麦中国春和茶淀红中克隆了TaMYB32的基因组和cDNA序列。序列分析表明TaMYB32在小麦二倍体祖先种中存在2种序列,在六倍体小麦中存在4种序列,其中1种序列在进化上非常保守,在二倍体和六倍体中完全相同。对TaMYB32基因组和cDNA序列比较分析表明它是一个没有内含子的基因。电子定位发现TaMYB32在小麦第六同源群上,每个基因组中有2个拷贝,这与测序结果相吻合。同源序列分析发现,TaMYB32与来自水稻和玉米中的MYB蛋白的相似性分别为72.4 %73.7%。组织表达特性分析表明该基因在小麦根、茎、叶、雌蕊和花药中均有较强的表达。半定量与实时定量RT-PCR结果表明TaMYB32是一个受盐胁迫诱导表达的基因。

关键词: 小麦, MYB转录因子, 耐盐相关基因

Abstract:

Transcriptional factors play an important role in plant adapt ability to abiotic stress at molecular level. MYB transcriptional factor family is a multifunctional gene family that have been found some of them take part in response to plant abiotic stress.In the large-scale sequencing of the wheat full length cDNAs cloned in our laboratory and functional analysising of transcriptional factors, a salt stress related gene was screened out and named TaMYB32. TaMYB32 is 1 250 bp in full length with a 732 bp ORF, encoding a R2R3-MYB transcriptional factor with 244 amino acids. The sequences of TaMYB32 were cloned from the diploid ancestors of Triticum urartu UR206, Aegilops speltoides Y2006 and Aegilops tauschii Y2282 and hexaploid wheat of Chinese Spring and Chadianhong using the primers designed based on the cDNA sequence of TaMYB32. Sequence analysis indicated that two types of sequences existed in the diploid ancestors and four in hexaploid wheat. One of the sequences was the same in the diploid and hexaploid wheats which implied that TaMYB32 was very conservative during the evolution of wheat. After comparing the genomic sequences with their cDNA sequences of TaMYB32, we found that it was a non-intron gene. TaMYB32 was mapped onto wheat homoeologous group 6 using electronic mapping strategy; there were two copies in each genome of hexaploid wheat, which was consistent with the sequencing results. Homologous analysis found thatTaMYB32 had a similarity with R2R3-MYB proteins from rice and maize as high as 72.4% and 73.7%, respectively. Tissue specific analysis indicated that TaMYB32 expressed in root, stem, leaf, pistil and anther. Semi-quantitative and real-time RT-PCR revealed that the expression of TaMYB32 was induced by salt stress.

Key words: Wheat, MYB transcriptional factor, Salt-tolerance related gene

[1]Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol, 2009, 149: 88-95



[2]Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221-227



[3]Kreps J A, Wu Y, Chang H S, Zhu T, Wang X, Harper J. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol, 2002, 130: 2129-2141



[4]Seki M, Narusaka M, Ishida J. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31: 279-292



[5]Pabo C O, Sauer R T. Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem, 1992, 61: 1053-1095



[6]Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsistranscription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110



[7]Rosinski J A,Atchley W R. Molecular evolution of the Myb family of transcription factors: Evidence for polyphyletic origin. Mol Evol, 1998, 46: 74-83



[8]Jin H,Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol, 1999, 41: 577-585



[9]Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, Zhang R, Aimolo S, Ametani Y, Hirata Z, Sarai A, Ishii S,Nishimura Y. Comparison of the free and DNA-complexed forms of the DNA-binding domain of c-Myb. Nat Struct Biol, 2005, 2: 309-320



[10]Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kana H, Sarai A, Ishii S, Nishimura Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell, 1997, 79: 639-648



[11]Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis MYB homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993, 5: 1529-1539



[12]Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78



[13]Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J, 2008, 53: 53-64



[14]Jung C K, Seo J S, Han S W, Koo Y, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 2008, 146: 623-635



[15]Denekamp M, Smeekens S C. Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol, 2003, 132: 1415-1423



[16]Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I.Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J, 2004, 37: 115-127



[17]Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol, 2007, 143: 1739-1751



[18]Lee T G, Jang C S, Kim J Y, Kim D S, Park J H, Kim D Y, Seo Y W. A Mybtranscription factor (TaMyb1) from wheat roots is expressed during hypoxia: roles in response to the oxygen concentration in root environment and abiotic stresses. Physiol Plant, 2007, 129: 375-385



[19]Qi L L, Echalier B, Chao S, Lazo G R, Butler G E, Anderson O D, Akhunov E D, Dvorák J, Linkiewicz A M, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis C E, Greene R A, Kantety R, La Rota C M, Munkvold J D, Sorrells S F, Sorrells M E, Dilbirligi M, Sidhu D, Erayman M, Randhawa H S, Sandhu D, Bondareva S N, Gill K S, Mahmoud A A, Ma X F, Miftahudin, Gustafson J P, Conley E J, Nduati V, Gonzalez-Hernandez J L, Anderson J A, Peng J H, Lapitan N L V, Hossain K G, Kalavacharla V, Kianian S F, Pathan M S, Zhang D S, Nguyen H T, Choi D W, Fenton R D, Close T J, McGuire P E, Qualset C O, Gill B S. A chromosome bin map of 16 000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics, 2004, 168: 701-712



[20]Randhawa H S, Dilbirligi M, Sidhu D, Erayman M, Sandhu D, Bondareva S, Chao S, Lazo G R, Anderson O D, Miftahudin Gustafson J P, Echalier B, Qi L L, Gill B S, Akhunov E D, Dvorák J, Linkiewicz A M, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis C E, Greene R A, Sorrells M E, Conley E J, Anderson J A, Peng J H, Lapitan N L V, Hossain K G, Kalavacharla V, Kianian S F, Pathan M S, Nguyen H T, Endo T R, Close T J, McGuire P E, Qualset C O, Gill K S. Deletion mapping of homoeologous group 6-specific wheat expressed sequence tags. Genetics, 2004, 168: 677-686



[21]Akhunov E D, Goodyear A W, Geng S, Qi L L, Echalier B, Gill B S, Miftahudin Gustafson J P, Lazo G, Chao S M, Anderson O D, Linkiewicz A M, Dubcovsky J, La Rota M, Sorrells M E, Zhang D S, Nguyen H T, Kalavacharla V, Hossain K, Kianian S F, Peng J H, Lapitan N L V, Gonzalez-Hernandeiz J L, Anderson J A, Choi D W, Close T J, Dilbirligi M, Gill K S, Walker-Simmons M K, Steber C, McGuire P E, Qualset C O, Dvorak J. The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms.Genome Res, 2003, 13: 753-763

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!