欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1344-1349.doi: 10.3724/SP.J.1006.2009.01344

• 耕作栽培·生理生化 • 上一篇    下一篇

缺磷对已结瘤大豆生长和固氮功能的影响

苗淑杰,乔云发,韩晓增*,王树起,李海波   

  1. 中国科学院东北地理与农业生态研究所,黑龙江哈尔滨150081
  • 收稿日期:2008-12-20 修回日期:2009-03-18 出版日期:2009-07-12 网络出版日期:2009-05-19
  • 作者简介:E-mail: miaoshujie@126.com; Tel: 0451-86648128
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2005CB121101)和中国科学院东北地理与农业生态研究所青年博士基金资助。

Effects of Phosphorus Deficiency on Growth and Nitrogen Fixation of Soybean after Nodule Formation

MIAO Shu-Jie,QIAO Yun-Fa,HAN Xiao-Zeng*,WANG Shu-Qi,LI Hai-Bo   

  1. Northeast Institute of Geography and Agro-exology,Chinese Academy of Sciences,Harbin 150081,China
  • Received:2008-12-20 Revised:2009-03-18 Published:2009-07-12 Published online:2009-05-19
  • About author:E-mail: miaoshujie@126.com; Tel: 0451-86648128

摘要:

磷对大豆生长起着非常重要的作用,然而区别磷在大豆生长和根瘤功能中的影响非常困难。为阐明根瘤形成后缺磷对大豆植株生长和固氮功能的影响,采用水培方法,营养液中供给正常磷酸盐浓度(30 µmol L-1)条件下,待根瘤形成后,将营养液中的磷水平分别转换为0 µmol L-1 (无磷)4 µmol L-1 (缺磷),研究缺磷对大豆生长和结瘤固氮的影响。结果表明,大豆根瘤具有固氮功能后,进行营养液中不同浓度的磷酸盐处理,从处理第9天开始,缺磷对大豆生物量的影响才表现出来,而缺磷对根瘤形成和生长的影响从处理开始就比较明显。处理第9天,无磷、缺磷和正常磷处理根瘤数比处理第3天分别增加11.8%15.4%20.0%,单位植株豆血红蛋白含量和单位根瘤豆血红蛋白含量都随磷浓度增加而增加。该结果表明,在保证大豆形成一定数目的根瘤后,缺磷会明显影响根瘤生长和固氮能力。

关键词: 大豆, 根瘤, 固氮

Abstract:

Phosphorus had a key role in soybean growth, however, it is very different to separate the role in soybean growth from that in nodule function. The research was conducted to elucidate the effects of phosphorus deficiency on growth and nitrogen fixation after nodule formation in soybean. Soybean seedlings were cultivated in nutrient solution culture with normal phosphorus concentration (30 µmol L-1), which was shifted to 0 and 4 µmol L-1 after nodule formation resulting in phosphorus deficienct for soybean plants.The results showed that phosphorus deficiency negatively influenced soybean plant growth at the ninth day of phosphorus deficiency treatment and nitrogen fixation at the beginning of the treatnent. The nodule number increased by 11.8%, 15.4%, and 20.0%, respectively in 0, 4, and 30 µmol L-1 phosphorus treatments at the ninth of treatment (DOT) compared with that at the third DOT. Leghemoglobin concentration per gram of plant and per nodule biomass increased with phosphorus concentration increase. These suggested that phosphorus deficiency affected significantly nodule development and nitrogen fixation when soybean plants formed sufficient nodule.

Key words: Soybean, Phosphorus, Nodule, Nitrogen fixation

[1] Lu J-L(陆景陵), Zhang F-S(张福锁), Li C-J(李春俭), Zou C-Q(邹春琴), Cao Y-P(曹一平), Li X-L(李晓林), Mi G-H(米国华). Plant Nutrition (植物营养学). Beijing: China Agricultural University Press, 2003. pp 35-38 (in Chinese)
[2] Sa T M, Israel D W. Energy status and functioning of phosphorus-deficient soybean nodules. Plant Physiol, 1991, 97: 928-935

[3] Yang Y. The effects of phosphorus on nodule formation in the Casuarina-Frankia symbiosis. Plant Soil, 1995, 176: 161-169

[4] Reddell P, Yang Y, Shipton W A. Do Casuarina cunninghamiana seedlings dependent on symbiotic N2 fixation have higher phosphorus requirement than those supplied with adequate fertilizer nitrogen? Plant Soil, 1997, 189: 213-219

[5] Israel D W. Investigation of the role phosphorus in symbiotic dinitrogen fixation, Plant Physiol, 1987, 84: 835-840

[6] Israel D W. Symbiotic dinitrogen fixation and host-plant growth during development of and recovery from phosphorus deficiency. Physiol Plant, 1993, 88: 294-300

[7] Jakobsen I. The role of phosphorus in nitrogen fixation by young pea plants (Pisum sativum). Physiol Plant, 1985, 64: 190-196

[8] Ohwaki Y, Sugahara P. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L.). Plant Soil, 1997, 189: 49-55

[9] Tang C, Hinsinger P J, Drevon J J, Jaillard B. Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L. Ann Bot, 2001, 88: 131-138
[10] Dong Z(董钻). Soybean Yield Physiology(大豆产量生理). Beijing: China Agriculture Press, 1999. pp 97-98 (in Chinese )
[11] Zuo Y-M(左元梅), Liu Y-X(刘永秀), Zhang F-S(张福锁). Effects of improvement of iron nutrition by mixed cropping with maize on nodule microstructure and leghemoglobin content of peanut. J Plant Physiol Mol Biol (植物生理与分子生物学学报). 2003, 29(1): 33-38 (in Chinese with English abstract)

[12] Moez J, Mohamed E A, Helene P, Drevon J J. Nodule conductance varied among common bean (Phaseolus vulgaris) genotypes under phosphorus deficiency. J Plant Physiol, 2005, 162: 309-315
[13] Hellsten A, Huss-Danell K. Interaction effects on nitrogen and phosphorus on nodulation in red clover (Trifolium) patens (L.). Acta Afric Acan, 2001, 50: 135-142
[14] Shleev S V, Rozov F N, Topunov A F. A Method for producing multiple forms of metleghemoglobin reductaseand leghemoglobin components from lupine nodules. Appl Biochem Microbiol, 2001, 37: 195-200
[15] Oka-Kia E, Kawaguchi M. Long-distance signaling to control root nodule number. Plant Biol, 2006, 9: 1-7
[16] Sinclair T R, Serraj R. Legume nitrogen fixation and drought. Nature, 1995, 378: 344-347
[17] Katerina L R, Gautam S, Robert V K, Raularredondo P. Characterization of leghemoglobin from a mimosoid legume, Leucaena esculenta, root nodules. Brazil J Plant Physiol, 2000, 12: 37-44
[18] Sheokand S, Babber S, Swaraj K. Nodule structure and functioning in Cicer arietinum as affected by nitrate. Biol Plant, 1998, 41: 435-443
[19] Takashi S, Noriyasu O, Hiroyuki F, Norikuni O, Kuni S, Takuji O. Changes in four leghemoglobin components in nodules of hypernodulating soybean (Glycine max L. Merr.) mutant and its parent in the early nodule developmental stage. Plant Soil, 2001, 237: 129-135
[20] Wu M-C(吴明才), Xiao C-Z(肖昌珍), Zheng P-Y(郑普英). Study on the physiological function of phosphorus to soybean. Sci Agric Sci (中国农业科学), 1999, 32(3): 59-65 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!