欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (05): 713-720.doi: 10.3724/SP.J.1006.2010.00713

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻白条纹叶Gws基因的精细定位与遗传分析

许凤华1,程治军1,王久林1,吴自明1,孙伟2,张欣1,雷财林1,王洁1,吴赴清1,郭秀平1,刘玲珑3,万建民1,3*   

  1. 1 中国农业科学院作物科学研究所, 北京100081;2 山东省临沂市农业科学院, 山东临沂276012;3 南京农业大学作物遗传与种质创新国家重点实验室 / 江苏省植物基因工程技术研究中心, 江苏南京210095
  • 收稿日期:2009-11-25 修回日期:2010-02-07 出版日期:2010-05-12 网络出版日期:2010-03-15
  • 通讯作者: 万建民, E-mail: wanjm@caas.net.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100101)资助。

Genetic Analysis and Fine-Mapping of Gws Gene Using green-white-stripe Rice Mutant

XU Feng-Hua1,CHENG Zhi-Jun1,WANG Jiu-Lin1,WU Zi-Ming1,SUN Wei2,ZHANG Xin1,WANG Jie1,WU Fu-Qing1,GUO Xiu-Ping1,LIU Ling-Long3,WAN Jian-Min1,3,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Linyi Academy of Agricultural Sciences, Linyi 276012, China; 3 State Key Laboratory of Crop Genetics and Germplasm Enhancement / Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2009-11-25 Revised:2010-02-07 Published:2010-05-12 Published online:2010-03-15
  • Contact: WAN Jian-min, E-mail: wanjm@caas.net.cn

摘要:

叶色突变是一类十分明显的性状突变,在高等植物的叶绿素合成、叶绿体结构、功能、遗传、分化与发育等基础研究中均具有重要意义。到目前为止,已鉴定多个重要的水稻功能基因,据不完全统计,水稻中至少已定位了79个叶色突变位点,并已成功克隆出多个叶色相关基因,其中OsCHLH、OsCAO1、OsCAO2、chlorina 1、chlorina 9、ygl等直接参与编码叶绿素合成,其余基因均参与叶绿体发育调控。在日本晴(Nipponbare) T-DNA插入突变体库中筛选到一例对温度敏感的白条纹突变体gws (green-white-stripe),遗传分析表明它来自组织培养过程中的单隐性基因突变。利用gws与培矮64杂交组合的F2代群体,将Gws精细定位于第六染色体标记InDel 15和InDel 16之间,物理距离为73 kb,此区间内包含13个基因。基因组序列分析发现,突变体在核糖核苷二磷酸还原酶小亚基(ribonucleoside-diphosphate reductase small chain, RNRS1)编码区第314~315碱基发生缺失,第316~317碱基由GC变为TT,导致该基因阅读框移码突变,蛋白质翻译提前终止。该基因是已经报道的水稻白条纹叶基因St1 (Stripe 1)的等位基因,gws突变体较st1突变体的白条纹出现早且明显,gws白条纹表型出现在第2片叶之后,而st1的白条纹表型仅出现在第四或五片叶之后。

关键词: 水稻, 突变体, 叶绿素, 白条纹叶, stl突变体

Abstract:

Fine mapping and cloning of genes for leaf color mutation are of great importance in the study of chlorophyll biosynthesis and the structure, function, genetics and development of chloroplast in plant. A temperature-sensitive green-white-stripe leaf mutant gws was isolated from a rice T-DNA insertion mutant pool. Genetic analysis showed that the mutation was generated in tissue culture, rather than by T-DNA insertion, and it was controlled by a recessive nuclear gene. Linkage analysis of stripe plants with homologous recessive genes in an F2 population from the cross of gws × PA 64 indicated that Gws was flanked by the SSR markers of RM19680 and RM136 on Chromosome6, with genetic distances of 1.1 cM and 3.6 cM, respectively. The gene was further delimited by the newly developed markers InDel 15 and InDel 16 into a 73 kb region. A total of 13 genes, including 3 candidate leaf color genes, were found at this interval. Sequence alignments of these candidate genes between the wild-type and mutant revealed at least two bases deletion in the exon of LOC Os06g14620 (ribonucleoside-diphosphate reductase small chain), resulting in a frame-shift mutation and a premature stop codon. The same gene mutation caused by similar green-white-stripe (St1-Stripe 1) was documented previously. A slightly different phenotypes were observed between the mutants st1 and gws. In st1 plants, chlorotic leaves with a few longitudinal green stripes were observed until the fourth or fifth leaf blade mergence and the phenotype was later than that in gws emerged from second leaf seedling.

Key words: Rice, Mutant, Chloroplast, green-white-stripe, stl mutant

[1]Victor I K, Fabienne P C, Michel H, Pascale C D, Danja S, Karin M, Patrice G, Jonathan DGJ, Neil EH, Laurent N. A chromodomain protein encoded by the arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell, 1999, 1: 87-99
[2]Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41: 364-375
[3]Shoshi K,Kouji S, Toshifumi N, Nobuyuki K, Koji D, Naoki K, Junshi Y, Masahiro I, Hitomi Y, Hisako O, Isamu H, Keiichi K, Takahiro N, Eisuke O, Wataru Y, Kohji S, Chao J L, Kenji O, Toru S, Yasuhiro O, Kazuo M, Yoshiharu I, Sumio S, Tatsuto F, Yutaka S, Yuki T, Takashi K, Takeko K, Hiromi M, Michie K, Xie Q H, Lu M, Ryuya N, Akio S, Kouichi M, Satoko Y, Junko N, Rieko I, Junya I, Midori K, Akemi Y, Junichirou M, Takahiro K, Mitsuru O, Risa R, Mariko U, Kenichi M, Jun K W, Piero C, Adachi J, Katsunori A, Takahiro A, Shiro F, Ayako H, Wataru H, Norihito H, Koichi I, Yoshiki I, Masayoshi I, Ikuko K, Shinji K, Hedeaki K, Miyazaki A , Naoki O, Yoshimi O, Rintaro S, Daisuke S, Kenjiro S, Kazuhiro S, Akira S, Toshiyuki S, Masayasu Y, Yoshihide H. Collection, mapping and annotation of over 28000 cDNA clones from japonica rice. Science, 2003, 301: 376- 379
[4]Yeisoo Y, Teri R, Jennifer C, Christopher S, Hye R K, Kristi C, Shelly T, Jessica S, Yang T J, Gyoungju N, Ami J P, Scheen T, David H, Ryan O, Michael P, Gina P, Jennifer G, Heidi A, Manjiri P, Lindsay C, Jeff D, Megan B C, Todd W, David F, Friedrich E, Cari S, Lance E P, Leonid T, Lidia N, Melissa D B, Lori S, Doreen W, Andrew O, Sujit D, Neilay D, Raymond P, Emily H, Kristin F, Kathy K, Beth M, Theresa Z, Frederick K, Stephanie M, Vivekanand B, Robert A. M, Lincoln S, Pat M, Doug J, Holly C, Elaine M, Cheng Z K, Jiang J M, Richard W, McCombie W R, Rod A W, Yuan Q P, Shu O Y, Liu J, Kristine M J, Kristen G, Kelly M, Jessica H, Tamara T, Larry O, Jyati B, Mary K, Jin S H, Luke T, Anne C, Grace P, Susan V A, Terry U, Steve R, Bormann J, Tamara F, Joseph H, Victoria Z, Stacey B, Aymeric V, Tristan S, Hean K, Bernard S, Qi Y, Brian H, Jeremy P, Mihaela P, Natalia V. The rice chromosome 10 sequencing consortium. In-depth view of structure, activity, and evolution of rice chromosome 10. Science, 2003, 300: 1566-1569
[5]Kensuke K, Akiko M, Mitsuo N, Koh I. A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice
[J].Plant J
[6]Li H-C(李红昌), Qian Q(钱前), Wang B(王斌), Li X-B(李晓波), Zhu L-H(朱立煌), Xu J-C(徐吉臣). Identification and chromosomal localization of rice white panicle. Chine Sci Bull (科学通报), 2003, 48(3): 268-270 (in Chinese)
[7]International Rice Genome Sequence Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793-800
[8]Xue Y B, Li J Y, Xu Z H. Recent highlights of the China rice functional genomics program
[J].Trends Genet
[9]Kensuke K, Hisayo K, Hikaru S, Koh I. Characterization of a zebra mutant of rice with increased susceptibility to light stress. Plant Cell Physiol, 2000, 41: 158-164
[10]Li N(李娜), Chu H-W(储黄伟), Wen T-Q(文铁桥), Zhang D-B(张大兵). Genetic analysis and mapping of the rice white midrib mutant Oswm. Acta Agric Shanghai (上海农业学报), 2007, 23(1): 1-4 (in Chinese with English abstract)
[11]Hu J-T(胡景涛), Zhang J(张甲), Li Y-Y(李园园), Fu C-Y(付崇允), Zheng J(郑静), Chen J-B(陈家彬), Hu Y(胡燕), Li S-G(李仕贵). Genetic analysis and mapping of a rice white midrib mutant Oswm2. Hereditas (遗传), 2008, 31(9): 1201-1206 (in Chinese with English abstract)
[12]Jung K H, Hur J, Ryu C H, Chung Y Y, Miyao A, Hirochika H, Gynheung A Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system.
[J]. Plant Cell Physiol
[13]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development
[J]. Plant Mol Biol
[14]Sichul L, Kim J H, Yoo E S, Lee C H, Hirohiko H, Gynheung A. A differential regulation of chlorophyll a oxygenase genes in rice
[J].Plant Mol Biol
[15]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis
[J].Plant Physiol
[16]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic systerm at an early stage of chloroplast differentiation
[J].Plant Cell Physiol
[17]Gothandam K M, Kim E S, Cho H J, Chung Y Y. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis
[J]. Plant Mol Biol
[18]Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y I, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation
[J]. Plant Cell
[19]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence
[J].Plant Cell
[20] Yutaka S, Ryouhei M, Susumu K, Minoru N, Ayumi T, Makoto K. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57: 120-131
[21]Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic membranes. In: Packer L, Douce R, eds. Methods in Enzymology. New York: Academic Press,1987. pp 350-382
[22]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA
[J]. Nucl Acids Res
[23]Sanguinetti C J, Dias N E, Simpson A J G. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17: 915-919
[24]Li Q(李强), Wan J-M(万建民). SSRHunter: development of a local searching software for SSR sites. Hereditas (遗传), 2005, 27(5): 803-810 (in Chinese with English abstract)
[25]Matthew J T, Richard E K. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato
[J].Plant Physiol
[26]Ulrike O, Ryouichi T, Ayumi T, Wolfhart R. Clonging and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis(CAO) from Arabidopsis thaliana
[J].Plant J
[27]Jung K H, Lee J, Chris D, Seo Y S, Cao P J, Patrick, Jirapa P, Xu X, Shu O Y, Kyungsook A, Cho Y J, Lee G C, Yoosook L, Gynheung A, Pamela C R. Identification and functional analysis of light-responsive unique genes and gene family members in rice. PLoS Genet, 2008, 4(8): e1000164
[28]Tanya G F, Staehilin L A. Partial blocks in the early steps of the chlorophyll synthesis pathway: A common feature of chlorophyll b-deficient mutants
[J].Physiologia Plantarum
[29]Allen K D, Duysen M E, Staehelin L A. Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyllb-deficient CD3 mutant of wheat
[J].J Cell Biol
[30]Falbel T G, Staehelin L A. characterization of a family of chlorophyll-deficient wheat and barley mutants with defects in the Mg-insertion step of chlorophyll biosynthesis
[J].Plant Physiol,
[31]Falbel T G, Staehelin L A, Adams W W. Analysis of xanthophyll cycle carorenoids and chlorophyll fluorescence in light intensity dependent chlorophyll -deficient mutants of wheat and barley
[J].Photosynth Res
[32]Koomneef M, van Eden J, Hanhart C J, Stam P, Brarksma F J, Feenstra W J. Linkage map of Arabidopsis thaliana. J Hered 1983, 74: 265-272
[33]Reinbothe S, Pollmann S, Springer A, James R J, Tichtinsky G, Reinbothe C. A role of Toc33 in the protochlorophyllide-dependent plastid import pathway of NADPH protochlorophyllide oxidoreductase (POR) A
[J].Plant J
[34]Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species
[J].Plant Cell
[35]Yoo S H, Cho S H, Sugimoto H, Li J J, Kusumi K, Koh H J, Koh I, Paek N C. Rice Virescent-3 and Stripe-1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development
[J].Plant Physiol
[36]Cui H-R(崔海瑞), Xia Y-W(夏英武), Gao M-W(高明尉). Effects of temperature on leaf color and chlorophyll biosynthesis of rice mutant W 1. Acta Agric Nucl Sin (核农学报),2001, 15(5): 269-273 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!