欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1075-1083.doi: 10.3724/SP.J.1006.2010.01075

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米泛素延伸蛋白基因ZmERD16的克隆、序列特征和表达分析

陆月赏1,2,刘颖慧2,3,**,张登峰2,石云素2,宋燕春2,王天宇2,*,杨德光1,*,黎裕2   

  1. 1东北农业大学农学院,黑龙江哈尔滨150030;2中国农业科学院作物科学研究所,北京 100081;3河北北方学院,河北张家口075000
  • 收稿日期:2010-01-05 修回日期:2010-03-04 出版日期:2010-07-12 网络出版日期:2010-04-28
  • 通讯作者: 王天宇,E-mail: wangtianyu@263.net;杨德光,E-mail: ydgl@tom.com
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101700),国家高技术研究发展计划(863计划)项目(2006AA10Z188)和国家自然科学基金重点项目(30730063)资助.

Identification and Expression Analysis of ZmERD16,a Ubiquitin Extension Protein Gene in Maize (Zea mays L.)

LU Yue-Shang1,2,LIU Ying-Hui2,3,**, ZHANG Deng-Feng2, SHI Yun-Su2, SONG Yan-Chun2, WANG Tian-Yu2,*, YANG De-Guang1,*, LI Yu2   

  1. 1College of Agronomy,Northeast Agricultural University,Harbin 150030,China;2 Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China;3Hebei North University,Zhangjiakou 075000,China
  • Received:2010-01-05 Revised:2010-03-04 Published:2010-07-12 Published online:2010-04-28
  • Contact: WANG Tian-Yu,E-mail: wangtianyu@263.net;YANG De-Guang,E-mail: ydgl@tom.com

摘要: 在前期研究中发现一个玉米苗期早期应答干旱的EST序列与拟南芥泛素延伸蛋白ERD16序列同源性很高。本研究根据拟南芥AtERD16序列,应用同源克隆技术分离出玉米泛素延伸蛋白基因,命名为ZmERD16ZmERD16的开放阅读框为390 bp,编码129个氨基酸,等电点pI为 9.94,分子量为14.7582 kD。ZmERD16蛋白包含1个泛素单体蛋白,其后融合了53个氨基酸的核糖体多肽,属于泛素延伸蛋白亚族。ZmERD16具有4个外显子3个内含子的基因组结构,其启动子区域具有多个干旱、病害、水杨酸、乙烯、真菌等胁迫响应应答元件。蛋白结构预测显示ZmERD16无跨膜结构,定位于细胞质和细胞核中。利用实时荧光定量PCR对ZmERD16的组织表达特异性和在不同胁迫条件下的表达谱分析表明,ZmERD16在各组织中均表达,其表达量受盐、脱水、PEG、低温、高温、茉莉酸甲酯和水杨酸等多种胁迫信号诱导。推测ZmERD16可能参与玉米的多种胁迫信号传导和逆境应答进程。

关键词: 玉米, 泛素延伸蛋白, 克隆, 逆境胁迫, ZmERD16

Abstract: Ubiquitin extension protein is a fusion prot0ein of an ubiquitin monomer followed by a ribosomal protein with 52–53 animo acids or 76–78 amino acids. Ubiquitin extension proteins have been paid attention that they play important roles in responding to stresses and regulating certain developmental processes in plants. We describe here the isolation, sequence characteristics and expression analysis of ZmERD16 gene encoding a homologue of ubiquitin extension protein. ZmERD16 includes a 390 bp open reading frame (ORF) encoding an ubiquitin monomer followed by 53 animo acids, with a predicted molecular mass of 14.7582 kD and pI of 9.94. The genomic DNA and the promoter region of ZmERD16 were obtained by PCR method. The genomic DNA was composed of four exons and three introns. Promoter had some motifs that were related to light, stress, defense, development, auxin and other stresses. The tissue-specific expression analysis suggested that ZmERD16 was constitutively expressed in maize different tissues. Quantitative real-time RT-PCR results showed ZmERD16 was a multiple stresses inducible gene, induced by various stresses, such as salt, dehydration, cold, heat, PEG, methy jasmonat (MJ) and salicylic acid (SA), but not by ABA and 2,4-D. These results suggested that ZmERD16 might play an important role in various signal transduction pathways of stresses in plant.

Key words: Maize, Ubiquitin extension protein, Clone, Stress, ZmERD16

    [1]      Jones A M, Vierstra R D, Daniels S M, Quail P. The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L. Planta, 1985, 164: 501–506    
[2]      Dong F-C(董发才), Song C-P(宋纯鹏). The ubiquitin and its physiological functions in plants. Plant Physiol Commun (植物生理学通讯), 1999, 35(1): 54–59 (in Chinese)    
[3]      Wang G-H(王高鸿), Huang J-C(黄久常). Selected degradation of proteins. Chin Bull Life Sci (生命科学), 1999, 11(1): 24–26 (in Chinese with English abstract)    
[4]      Monia B P, Ecker D J, Crooke S T. New perspectives on the structure and function of ubiquitin. Nat Biotechnol, 1990, 8: 209–215    
[5]      Ozkaynak E, Finley D, Solomon M J, Varshavsky A. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J, 1987, 6: 1429–1439    
[6]      Baker R T, Board P G. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucl Acids Res, 1991, 19: 1035–1040    
[7]      Callis J, Raasch J A, Vierstra R D. Ubiquitin extension protein of Arabidopsis thealiana. J Biol Chem, 1990, 26: 12486–12493    
[8]      Finley D, Bartel B, Varshavsky A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature, 1989, 338: 394–401    
[9]      Tytgat T, Vanholme B, Meutter J D, Claeys M, Couvreur M, Vanhoutte I, Gheysen G, Criekinge W V, Borgonie G, Coomans A, Gheysen G. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes. Mol Plant-Microbe Interact, 2004, 17: 846–852  
[10]      Belknap W R, Garbarino J E. The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci, 1996, 1: 331–335  
[11]      Dreher K, Callis J. Ubiqutin, hormones and biotic stress in plants. Ann Bot(Lond), 2007, 99: 787–822  
[12]      Kiyosue T, Kazuko Y S, Shinozaki K. Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs. Plant Mol Biol, 1994, 25: 791–798  
[13]      Li H Y, Wang T Y, Shi Y S, Fu J J, Song Y C, Wang G Y, Li Y. Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). DNA Sequence, 2007, 18: 445–460  
[14]      Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCTmethod. Methods, 2001, 25: 402–408  
[15]      Xu H-T(涂洪涛), An S-H(安世恒), Guo X-R(郭线茹), Luo M-H(罗梅浩), Wu S-Y(吴少英), Yuan G-H(原国辉). Cloning of ubiquitin extension protein gene from Helicoverpa assulta and its expression in Escherichia coli. J Agric Biotechnol (农业生物技术学报), 2006, 14(6): 884–888 (in Chinese with English abstract)  
[16]      Chen W(陈文), Zheng P-P(郑萍萍), Nie L-W(聂刘旺). Construction of testis cDNA library and sequence analysis of ubiquitin/L40e extension gene in Bufobufo gargarizans. Chin J Zoology (动物学杂志), 2007, 42(1): 20–28 (in Chinese with English abstract)  
[17]      Berg J M. Potential metal-binding domains in nucleic acid binding proteins. Science, 1986, 232: 485–487  
[18]      Wei S-S(韦双双), Zhang Y-X(张英霞), Li W-H(李文辉), Zhang Y(张云). Molecular cloning and comparison of ubiquitin fusion protein and ribosomal protein L30 from Ophiophagus Hannah. Zoological Research (动物学研究), 2005, 26 (4): 397–403 (in Chinese with English abstract)  
[19]      Gausiong K, Barkardottir R. Structure and expression of ubiquitin genes in higher plants. Eur J Biochem, 1986, 258: 57–62 Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol, 2006, 141: 391–396
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[15] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!