作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1067-1074.doi: 10.3724/SP.J.1006.2010.01067
吴韦铷1,朱利泉1,*,李成琼3,杨昆1,唐章林2,任雪松3,王小佳3,*
WU Wui-Ru1,ZHU Li-Quan1*,LI Cheng-Qiong3,YANG Kun1,TANG Zhang-Lin1,REN Xue-Song3,WANG Xiao-Jia3*
摘要: 采用PCR、RT-PCR及其他分子生物学方法,以甘蓝基因组DNA、花蕾RNA和叶片RNA为模板,分别对甘蓝KAPP gDNA和KAPP cDNA进行扩增,分别获得3 247 bp的KAPP gDNA片段、1 699 bp的KAPP cDNA片段﹑1 578 bp的花蕾KAPP2 cDNA片段和1 581 bp的叶片KAPP2 cDNA片段。对克隆的甘蓝KAPP gDNA和cDNA(结合报道的KAPP cDNA)进行比对表明,甘蓝KAPP基因包含11个内含子,均符合“GU-AG”剪接规则,并且克隆得到的KAPP cDNA序列与报道的KAPP cDNA序列有6处单个碱基的差异,但两者的氨基酸序列完全一致。然而花蕾KAPP2 cDNA、叶片KAPP2 cDNA片段与报道的KAPP cDNA序列相似性分别为85.2%和85.0%。这两个序列分别在590 bp和593 bp处较早出现一个无义突变引起的终止密码子。Blast分析表明, 两基因编码的氨基酸序列与拟南芥KAPP氨基酸序列相似性最高,其次为甘蓝KAPP氨基酸序列。以已报道的8种植物KAPP的CDS及本实验所克隆的两个KAPP2序列构建分子进化树,获得序列与甘蓝KAPP序列聚为一支。结合比较作图及分子进化树,推测KAPP基因在甘蓝基因组上有两个拷贝,而笔者克隆到的KAPP2 cDNA序列是其中一个拷贝,是KAPP进化过程中突变失活的拟基因。
[1] Nou I S, Watanabe M, Isogai A, Hinata K. Comparison of S-alleles n S-glycoproteins between two wild populations of Brassica campestris in Turkey and Japan. Sex Plant Reprod, 1993, 6: 79–86 [2] Schopfer C R, Nasrallah M E, Nasrallah J B. The male determinant of self-incompatibility in Brassica. Science, 1999, 286: 1697–1700 [3] Stein J C, Howlett B, Boyes D C, Nasrallah M E, Nasrallah J B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Nat Acad Sci USA, 1991, 88: 8816–8820 [4] Cohen P T W. Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci, 1997, 22: 245–251 [5] Stone J M, Collinge M A, Smith R D, Horn M A, Walker J C. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science, 1994, 266: 793–795 [6] Torii K U. Receptor kinase activation and signal transduction in plants: An emerging picture. Curr Opin Plant Biol, 2000, 3: 361–367 [7] Clark S E, Williams R W, Meyerowitz E M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 1997, 89: 575–585 [8] Braun D M, Stone J M, Walker J C. Interaction of the maize and Arabidopsis kinase interaction doamins with a subset of receptor-like protein kinases: implication for transmembrane signaling in plants. Plant J, 1997, 12: 83–95 [9] Park A R, Cho S K, Yun U J, Jin M Y, Lee S H, Sachetto-Martins G, Park O K. Interaction of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich protein, AtGRP-3. Biol Chem, 2001, 276: 26688–26693 [10] Gómez-Gómez L, Bauer Z, Boller T. Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2are required for flagellin binding and signaling in Arabidopsis. Plant Cell, 2001, 13: 1155–1163 [11] Li J, Wen J Q, Lease K A, Doke J T, Tax F E, Walker J C. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 2002, 110: 213–222 [12] Shah K, Russinova E, Gadella T W Jr, Willemse J, De Vries S C. The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes, 2002, 16: 1707–2003 [13] Cabrillac D, Cock J M, Dumas C, Gaude T. The S-locus receptorkinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature, 2001, 410: 220–223 [14] Williams R W, Wilson J M, Meyerowitz E M. A possible role forkinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc Natl Acad Sci USA, 1997, 94: 10467–10472 [15] Stone J M, Trotochaud A E, Walker J C, Clark S E. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol, 1998, 117: 1217–1225 [16] Li Y-Y(李媛媛), Fu Y-D(傅廷栋), Ma C-Z(马朝芝). Advances of comparative genomics in Brassica. Chin Bull Bot (植物学通报), 2007, 24(2): 200–207 (in Chinese with English abstract) [17] Vanoosthuyse V, Tichtinsky G, Dumas C, Gaude T, Cock J M. Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S locus receptor kinase. Plant Physiol, 2003, 133: 919–929 [18] Zhao Y-B(赵永斌), Zhu L-Q(朱利泉), Wang X-J(王小佳). Cloning and sequences analysis of m locus protein kinase gene from Brassica oleracea. Acta Agric Sin (作物学报), 2006, 32(1): 46–50 (in Chinese with English abstract) [19] Liu D(刘东), Zhu L-Q(朱利泉), Wang X-J(王小佳). Cloning and characterization of SRK-binding protein THL1 gene from Brassica oleracea L. in self-incompatibility signaling process. Acta Hort Sin (园艺学报), 2003, 30(1): 56−58 (in Chinese with English abstract) [20] Liu D(刘东), Zhu L-Q(朱利泉) ,Wang X-J(王小佳). Cloning and sequences analysis of ARC1 protein gene, a substrate of SRKin SI signal transduction from Brassica oleracea. Acta Agron Sin (作物学报), 2004, 30(5): 427–431 (in Chinese with English abstract) [21] Li J, Smith G P, Walker J C. Kinase interaction domain of kinase-associated protein phosphatase, a phosphoprotein binding domain. Proc Natl Acad Sci USA, 1999, 96: 7821−7826 [22] Braun D M, Walker J C. Plant transmembrane receptors: New pieces in the signaling puzzle. Trends Biochem Sci, 1996, 21: 70−73 [23] Philip W B. Receptor kinases in plant development. Trends Plant Sci, 1998, 3: 384−388 [24] Nowak M A, Boerlijst M C, Cooke J, Smith J M. Evolution of genetic redundancy. Nature, 1997, 388: 167−170 [25] Brown T A. Yuan J-G(袁建刚) trans. Genomes 2, 1st edn. Beijing: Beijing scientific Publishers, 2006. pp 538−544 (in Chinese) [26] Barbazuk W B, Fu Y, McGinnis K M. Genome-wide analyses of alternative splicing in plants:opportunities and challenges. Genome Res,2008, 18: 1381−1392 [27] Zhang Z, Carriero N, Gerstein M. Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet, 2004, 20: 62−67 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRK、SLG和SP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168. |
[4] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[8] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[9] | 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113. |
[10] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[11] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[14] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[15] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
|