作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1075-1083.doi: 10.3724/SP.J.1006.2010.01075
陆月赏1,2,刘颖慧2,3,**,张登峰2,石云素2,宋燕春2,王天宇2,*,杨德光1,*,黎裕2
LU Yue-Shang1,2,LIU Ying-Hui2,3,**, ZHANG Deng-Feng2, SHI Yun-Su2, SONG Yan-Chun2, WANG Tian-Yu2,*, YANG De-Guang1,*, LI Yu2
摘要: 在前期研究中发现一个玉米苗期早期应答干旱的EST序列与拟南芥泛素延伸蛋白ERD16序列同源性很高。本研究根据拟南芥AtERD16序列,应用同源克隆技术分离出玉米泛素延伸蛋白基因,命名为ZmERD16。ZmERD16的开放阅读框为390 bp,编码129个氨基酸,等电点pI为 9.94,分子量为14.7582 kD。ZmERD16蛋白包含1个泛素单体蛋白,其后融合了53个氨基酸的核糖体多肽,属于泛素延伸蛋白亚族。ZmERD16具有4个外显子3个内含子的基因组结构,其启动子区域具有多个干旱、病害、水杨酸、乙烯、真菌等胁迫响应应答元件。蛋白结构预测显示ZmERD16无跨膜结构,定位于细胞质和细胞核中。利用实时荧光定量PCR对ZmERD16的组织表达特异性和在不同胁迫条件下的表达谱分析表明,ZmERD16在各组织中均表达,其表达量受盐、脱水、PEG、低温、高温、茉莉酸甲酯和水杨酸等多种胁迫信号诱导。推测ZmERD16可能参与玉米的多种胁迫信号传导和逆境应答进程。
[1] Jones A M, Vierstra R D, Daniels S M, Quail P. The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L. Planta, 1985, 164: 501–506 [2] Dong F-C(董发才), Song C-P(宋纯鹏). The ubiquitin and its physiological functions in plants. Plant Physiol Commun (植物生理学通讯), 1999, 35(1): 54–59 (in Chinese) [3] Wang G-H(王高鸿), Huang J-C(黄久常). Selected degradation of proteins. Chin Bull Life Sci (生命科学), 1999, 11(1): 24–26 (in Chinese with English abstract) [4] Monia B P, Ecker D J, Crooke S T. New perspectives on the structure and function of ubiquitin. Nat Biotechnol, 1990, 8: 209–215 [5] Ozkaynak E, Finley D, Solomon M J, Varshavsky A. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J, 1987, 6: 1429–1439 [6] Baker R T, Board P G. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucl Acids Res, 1991, 19: 1035–1040 [7] Callis J, Raasch J A, Vierstra R D. Ubiquitin extension protein of Arabidopsis thealiana. J Biol Chem, 1990, 26: 12486–12493 [8] Finley D, Bartel B, Varshavsky A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature, 1989, 338: 394–401 [9] Tytgat T, Vanholme B, Meutter J D, Claeys M, Couvreur M, Vanhoutte I, Gheysen G, Criekinge W V, Borgonie G, Coomans A, Gheysen G. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes. Mol Plant-Microbe Interact, 2004, 17: 846–852 [10] Belknap W R, Garbarino J E. The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci, 1996, 1: 331–335 [11] Dreher K, Callis J. Ubiqutin, hormones and biotic stress in plants. Ann Bot(Lond), 2007, 99: 787–822 [12] Kiyosue T, Kazuko Y S, Shinozaki K. Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs. Plant Mol Biol, 1994, 25: 791–798 [13] Li H Y, Wang T Y, Shi Y S, Fu J J, Song Y C, Wang G Y, Li Y. Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). DNA Sequence, 2007, 18: 445–460 [14] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCTmethod. Methods, 2001, 25: 402–408 [15] Xu H-T(涂洪涛), An S-H(安世恒), Guo X-R(郭线茹), Luo M-H(罗梅浩), Wu S-Y(吴少英), Yuan G-H(原国辉). Cloning of ubiquitin extension protein gene from Helicoverpa assulta and its expression in Escherichia coli. J Agric Biotechnol (农业生物技术学报), 2006, 14(6): 884–888 (in Chinese with English abstract) [16] Chen W(陈文), Zheng P-P(郑萍萍), Nie L-W(聂刘旺). Construction of testis cDNA library and sequence analysis of ubiquitin/L40e extension gene in Bufobufo gargarizans. Chin J Zoology (动物学杂志), 2007, 42(1): 20–28 (in Chinese with English abstract) [17] Berg J M. Potential metal-binding domains in nucleic acid binding proteins. Science, 1986, 232: 485–487 [18] Wei S-S(韦双双), Zhang Y-X(张英霞), Li W-H(李文辉), Zhang Y(张云). Molecular cloning and comparison of ubiquitin fusion protein and ribosomal protein L30 from Ophiophagus Hannah. Zoological Research (动物学研究), 2005, 26 (4): 397–403 (in Chinese with English abstract) [19] Gausiong K, Barkardottir R. Structure and expression of ubiquitin genes in higher plants. Eur J Biochem, 1986, 258: 57–62 Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol, 2006, 141: 391–396 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[10] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[11] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[12] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[15] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
|