欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1084-1091.doi: 10.3724/SP.J.1006.2010.01084

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

中国花生小核心种质与ICRISAT微核心种质的SSR遗传多样性比较

姜慧芳1,任小平1,张晓杰1,黄家权1,雷永1,晏立英1,廖伯寿1,Hari D UPADHYAYA2,Corley C HOLBROOK3   

  1. 1中国农业科学院油料作物研究所/农业部油料作物生物学重点开放实验室,湖北武汉430062;2International Crops Research Institute for the Semi-Arid Tropics,Patancheru,A P 502 324,India;3USDA-ARS,P O Box748,tifton,Georgia 31793,USA
  • 收稿日期:2009-12-25 修回日期:2010-04-20 出版日期:2010-07-12 网络出版日期:2010-05-20
  • 通讯作者: peanutlab@oilcrops.cn
  • 基金资助:

    本研究由国家科技支撑计划(2006BAD13B05-2),国家自然科学基金项目(30571132),国家科技基础条件平台项目(2005DKA21002-13)和农作物种质资源保护项目(NB07-2130135-35)资助。

Comparison of Genetic Diversity between Peanut Mini Core Collections from China and ICRISAT by SSR Markers

IANG Hui-Fang1,REN Xiao-Ping1,ZHANG Xiao-Jie1,HUANG Jia-Quan1,LEI Yong1,YAN Li-Ying1,LIAO Bo-Shou1,Hari D UPADHYAYA2,Corley C HOLBROOK3   

  1. Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Oil Crop Biology of Ministry of Agriculture, Wuhan 430062, China, 2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP 502 324, India;3 USDA-ARS, PO Box 748, Tifton, Georgia 31793, USA
  • Received:2009-12-25 Revised:2010-04-20 Published:2010-07-12 Published online:2010-05-20
  • Contact: peanutlab@oilcrops.cn

摘要: 明确花生种质资源的遗传多样性和分布规律,对于发掘优良种质资源,选配优良亲本,拓宽育成品种的遗传基础具有重要意义。核心种质为种质资源的研究、评价和鉴定带来了方便。本研究从206对SSR引物中筛选26对引物对我国花生小核心种质和ICRISAT微核心种质共466份资源进行了遗传多样性分析,相似系数为0.49~0.99,鉴定出遗传差异最大的种质L2刚果(中国花生资源)与ICG12625(ICRISAT资源),相似系数为0.49。分析结果表明,多粒型花生的多态性信息量(0.761)和遗传多样性指数(0.97~1.11)均最大(平均相似系数最小,0.73~0.76),其次是普通型花生。中国花生种质资源与ICRISAT资源存在较大差异,尤其是ICRISAT的赤道型材料ICG12625,与中国花生资源的差异最大。相似系数和遗传多样性指数的分析结果均表明,我国花生种质资源的遗传多样性比ICRISAT资源丰富。

关键词: 花生, 核心种质, SSR, 遗传多样性

Abstract: A core collection or mini core is a subset of accessions from the entire collection that covers most of available genetic diversity of a species. Extensive investigation of core collections is an efficient approach to enhance evaluation and utilization for crop germplasm. The mini core collections of peanut (Arachis hypogaea L.) from China consisting of 298 accessions and from International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) consisting of 168 accessions were comparatively analysed by SSR method. Twenty six polymorphic SSR markers screened from 206 primer pairs were used to investigate the similarity and genetic distance among the peanut accessions involved. The similarity coefficients between the genotype pairs among the 466 accessions ranged from 0.49 to 0.99. The largest genetic distance was between L2 Gangguo (a Chinese genotype) and ICG12625 (an ICRISAT genotype) with a similarity coefficient of 0.49. Among the six botanical types in peanut, accessions of fastigiata and hypogaea were more diversified than other types. There was considerable genetic difference between the Chinese peanut accessions and some ICRISAT accessions especially with the aequatoriana genotype ICG12625. The genetic diversity was greater among the Chinese peanut mini core than that among ICRISAT mini core in terms of the similarity coefficient and genetic diversity index.

Key words: Peanut, Core collection, SSR markers, Genetic diverity

[1] Wang Y-B(王耀波), Zhang Y-B(张艺兵), Zhang P(张鹏), Men A-J(门爱军). Perspectives and export promoting strategies in Chinese peanut industry after entering WTO. J Peanut Sci (花生学报), 2003, 32(suppl): 24–29 (in Chinese)
[2] Liao B-S(廖伯寿). Competitiveness analysis of oil industry in China. J Peanut Sci (花生学报), 2003, 32(suppl): 11–15 (in Chinese)
[3] Liang X-Q(粱炫强), Pan R-Z(潘瑞炽), Bin J-H(宾金华). Progress on mechanism of resistance to Aspergillus infection in peanut. Chin Oil Crops Sci (中国油料作物学报), 2000, 22(3): 77–80 (in Chinese with English abstract)
[4] Jiang H-F(姜慧芳), Wang S-Y(王圣玉), Ren X-P(任小平). Reaction of groundnut germplasm to Aspergillus flavus invasion. Chin Oil Crops Sci (中国油料作物学报), 2002, 24(1): 23–25 (in Chinese with English abstract)
[5] Yu S-L(禹山林). Peanut Varieties and Their Pedigree in China (中国花生品种及其系谱). Shanghai: Shanghai Science and Technology Press, 2008 (in Chinese)
[6] Sun D-R(孙大容). Peanut Breeding (花生育种学). Beijing: Chinese Agriculture Press, 1998 (in Chinese)
[7] Wan S-B(万书波). Peanut Cultivation in China (中国花生栽培学). Shanghai: Shanghai Science and Technology Press, 2008(in Chinese)
[8] Jiang H-F(姜慧芳), Ren X-P(任小平). Genetic diversity of peanut resource on morphological characters and seed chemical components in China. Chin Oil Crops Sci (中国油料作物学报), 2006, 28(4): 421-426 (in Chinese with English abstract)
[9] Jiang H-F(姜慧芳), Ren X-P(任小平), Huang J-Q(黄家权), Liao B-S(廖伯寿), Lei Y(雷永). Establishment of peanut mini core collection in China and exploration of new resource with high oleat. Chin Oil Crops Sci (中国油料作物学报), 2008, 30(3): 294-299 (in Chinese with English abstract)
[10] Jiang H-F(姜慧芳), Ren X-P(任小平), Liao B-S(廖伯寿), Huang J-Q(黄家权), Lei Y(雷永), Chen B-Y(陈本银), Guo B Z, Holbrook C C, Upadhyaya H D. Peanut core collection established in china and compared with ICRISAT mini core collection. Acta Agron Sin (作物学报), 2008, 34(1): 25–30 (in Chinese with English abstract)
[11] Mace E S, Phong D T. SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica, 2006, 152: 317–330
[12] Upadhyaya H D. Phenotypic diversity in groundnut (Arachis hypogaea L.) core collection assessed by morphological and agronomical evaluations. Genet Resourc Crop Evol, 2003, 50: 539-550
[13] Upadhyaya H D, Bramel P J, Ortiz R, Singh S. Geographical patterns of diversity for morphological and agronomic traits in the groundnut germplasm collection. Euphytica, 2002, 128: 191-204
[14] Jiang H F, Liao B S, Ren X P, Lei Y, Mace E, Fu T D, Crouch J H. Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses. J Genet Genom, 2007, 34: 544-554
[15] Jiang H-F(姜慧芳中国油料作物学报), 2007, 29(1): 26-30 (in Chinese with English abstract)), Chen B-Y(陈本银), Ren X-P(任小平), Liao B-S(廖伯寿), Lei Y(雷永), Fu T-D(傅廷栋), Ma C-Z(马朝芝), Mace E, Crouch J H. Identification of SSR markers linked to bacterial wilt resistance of peanut with RILs. Chin Oil Crops Sci (
[16] Liu J(刘金), Guan J-P(关建平), Xu D-X(徐东旭), Zhang X-Y(张晓艳), Gu J(顾竟), Zong X-X(宗绪晓). Analysis of genetic diversity and population structure in lentil (Lens culinaris Medik.) germplasm by SSR markers. Acta Agron Sin (作物学报), 2008, 34(11): 1901-1909 (in Chinese with English abstract)
[17] Zong X-X(宗绪晓), Guan J-P(关建平), Wang S-M(王述民), Liu C-Q(刘庆昌). Genetic diversity among chinese pea (Pisum sativum L.) landraces revealed by SSR markers. Acta Agron Sin (作物学报), 2008, 34(8): 1330-1338 (in Chinese with English abstract)
[18] Yu Y(余渝), Wang Z-W(王志伟), Feng C-H(冯常辉), Zhang Y-X(张艳欣), Lin Z-X(林忠旭), Zhang X-L(张献龙). Genetic evaluation of EST-SSRs derived from Gossypium herbaceum. Acta Agron Sin (作物学报), 2008, 34(12): 2085-2091 (in Chinese with English abstract)
[19] Upadhyaya H D, Bramel P J, Ortiz R, Singh S. Developing a mini core of peanut for utilization of genetic resources. Crop Sci, 2002, 42: 2150-2156
[20] Holbrook C C, Anderson W F, Pittman R N. Selection of a core collection from the US germplasm collection of peanut. Crop Sci, 1993, 33: 859-861
[21] Holbrook C C, Dong W B. Developing and evaluation of a mini core collection for the US peanut germplasm collection. Crop Sci, 2005, 45: 1540-1544
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[5] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[6] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[9] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[10] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[11] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[12] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[13] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[14] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!