欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1108-1113.doi: 10.3724/SP.J.1006.2010.01108

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻中胚轴长度QTL分析

黄成,姜树坤**,冯玲玲,徐正进*,陈温福   

  1. 沈阳农业大学/农业部作物生理生态遗传育种重点开放实验室/辽宁省北方粳稻育种重点实验室,辽宁沈阳110161
  • 收稿日期:2010-02-03 修回日期:2010-04-20 出版日期:2010-07-12 网络出版日期:2010-06-12
  • 基金资助:

    本研究由国家自然科学基金项目(30971845)和国家重点基础研究发展计划(973计划)项目(2009CB126007)资助。

QTL Analysis for Mesocotyl Length in Rice(Qryza sativa L.)

HUANG Cheng,JIANG Shu-Kun**,FENG Ling-Ling,XU Zheng-Jin*,CHEN Wen-Fu   

  1. Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture / Key Laboratory of Northern Japonica Rice Breeding of Liaoning Province / Shenyang Agricultural University, Shenyang 110161, China
  • Received:2010-02-03 Revised:2010-04-20 Published:2010-07-12 Published online:2010-06-12

摘要:

为分析水稻中胚轴伸长与赤霉素的关系及其遗传基础, 以沈农265 (长中胚轴)和丽江新团黑谷(短中胚轴)的RIL群体为材料, 结合其连锁图谱, 对水和赤霉素溶液两种培养条件下的中胚轴长度进行QTL定位。结果表明, 浓度为1.50 mmol L-1的赤霉素可显著促进中胚轴的伸长。两种培养条件下, 共检测到控制中胚轴长度的5个QTL, 分布在第1、第2、第3、第6和第11号染色体上, LOD值在3.65~15.52范围内, 单个QTL对表型贡献率在7%~33%之间。其中qML3qML6qML11在2种处理条件下均被检测到, qML1qML2仅在水培条件下被检测到。与其他研究比较发现, 主效基因qML3可以在不同群体和不同环境下稳定表达。

关键词: 水稻, 中胚轴长度, 赤霉素, 数量性状座位

Abstract:

To understand genetic basis underlying the relationship between mesocotyl elongation and hormone (GA) in rice (Oryza sativa L.), we genetically analyzed RILs population derived from a cross between two japonica rice cultivars, Shennong 265 (long mesocotyl) and Lijiangxintuanheigu (short mesocotyl), with its linkage map. QTLs for mesocotyl length were detected under water and GA germination conditions. The results showed that GA at 1.50 mmol L-1 stimulated mesocotyl elongation dramatically. Total five QTLs for rice mesocotyl length, each accounting for 7% to 33% of the phenotypic variance (VE), were detected on chromosomes 1, 2, 3, 6, and 11 under two germination conditions (environments). The LOD value of each QTL was ranged from 3.65 to 15.52. Among the five QTLs, qML3, qML6, and qML11 were detected under both germination conditions and qml1 and qml2 were identified only under water germination condition. In comparison with other studies revealed that major QTL qML3 was easily re-detected in different populations and environments.

Key words: Rice, Mesocotyl length, Gibberellin, Quantitative trait loci

  
[1]   
Zheng X-R(郑相如), Fan Y-L(范雅兰). Hypocotyl—a special strucyure of embryophyte. Biol Bull (植物学通报), 1998, 33(5): 10-11 (in Chinese)
  

[2]   
Wu M G, Zhang G H, Lin J R, Cheng S H. Screening for rice germplasms with specially-elongated mesocotyl. Rice Sci, 2005, 12(3): 226-228
  

[3]   
Wang Y(王莹), Ma D-R(马殿荣), Chen W-F(陈温福). Pilot study on mesocotyl elongation characters of northern weedy rice. China Rice (中国稻米), 2008, (3): 47-49 (in Chinese)
  

[4]   
Lin J-R(林建荣), Zhang G-H(张光恒), Wu M-G(吴明国), Cao L-Y(曹立勇), Cheng S-H(程式华). Genetic analysis of mesocotyl elongation in rice (Oryza sativa L. subsp. japanica). Acta Agron Sin (作物学报), 2006, 32(2): 249-252 (in Chinese with English abstract)
  

[5]   
Redoña E D, Mackill D J. Mapping quantitative trait loci for seedling vigor in rice using RFLP. Theor Appl Genet, 1996, 92: 395-402
  

[6]   
Cao L-Y(曹立勇), Zhu J(朱军), Yan Q-C(颜启传), He L-B(何立斌), Wei X-H(魏兴华), Cheng S-H(程式华). Mapping QTLs with epistasis for mesocotyl length in a DH population from indica-japanica cross of rice (Oryza sativa). Chin J Rice Sci (中国水稻科学), 2002, 16(3): 221-224 (in Chinese with English abstract)
  

[7]   
Katsuta-Seki M, Ebana K, Okuno K. QTL analysis for mesocotyl elongation in rice. Rice Genet Newsl, 1996, 13: 126-127
  

[8]   
Nishizawa T, Suge H. Ethylene and carbon dioxide: regulation of oat mesocotyl growth. Plant Cell Environ, 1995, 18: 197-203
  

[9]   
Suge H. Mesocotyl elongation in japonica rice: effect of high temperature pre-treatment and ethylene. Plant Cell Physiol, 1972, 13: 401-405


[10]    Chen J-G(陈金桂), Zhang Y-Z(张玉宗), Zhou X(周燮). Regulation foxtail millet mesocotyl growth gibberellins and abscisic acid in etiolated seedlings. J Nanjing Agric Univ (南京农业大学学报), 1997, 20(1): 13
-17 (in Chinese with English abstract)


[11]    Cao L-Y(曹立勇), Yuan S-J(袁守江), Zhou H-P(周海鹏), Zhan X-D(占小登), Wu W-M(吴伟明), Gao J-X(高俊贤), Cheng S-H(程式华). Effect of different hormones on mesocotyl length in Oryza sativa L. Acta Agron Sin (作物学报), 2005, 31(8): 1098
-1100 (in Chinese with English abstract)


[12]    Jiang S-K(姜树坤), Zhang X-J(张喜娟), Xu Z-J(徐正进), Chen W-F(陈温福). Comparison between QTLs for chlorophyll content and genes controlling chlorophyll biosynthesis and degradation in japonica rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2010, 36(3): 376
-384 (in Chinese with English abstract)


[13]    Nelson J C. QGENE: software for marker-based genomic analysis and breeding. Mol Breed, 1997, 3: 239
-245


[14]    Wu S-Q(吴三桥), Ding R(丁锐), Li X-S(李新生). Regulation of mesocotyl growth by gibberellic acid and abscisic acid in etiolated seedlings of black rice. Amino Acids Biotic Resour (氨基酸和生物资源), 2002, 24(3): 44
-45 (in Chinese with English abstract)


[15]    Takahashi K. Abscisic acid as an endogenous stimulator for rice mesocotyl growth. Chem Regul Plants, 1985, 20(1): 53
-60 (in Japanese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!