欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 36-46.doi: 10.3724/SP.J.1006.2010.00036

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆重组自交系群体NJRIKY遗传图谱的加密及其应用效果

周斌1,邢邯1,陈受宜2,盖钧镒1   

  1. 1南京农业大学大豆研究所/国家大豆改良中心/作物遗传生理重点实验室,南京210095;2中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室,北京100101
  • 收稿日期:2009-05-08 修回日期:2009-10-02 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 通讯作者: 盖钧镒, E-mail: sri@njau.edu.cn; Tel: 025-84395405
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101708,2009CB118404),国家高新技术研究发展计划(863计划)项目(2006AA100104),教育部高等学校学科创新引智计划项目(B08025),农业部公益性行业专项(200803060)资助。

Density-Enhanced Genetic Linkage Map of RIL Population NJRIKY and Its Impacts on Mapping Genes and QTLs and QTLs in Soybean

ZHOU Bin1,XING Han1,CHEN Shou-Yi2,GAI Jun-Yi1,*   

  1. 1Soybean Research Institute of Nanjing Agricultural University/National Center for Soybean Improvemet/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095,China;2 State Key Laboratory of Plant Gemomics,Institute of Genetics and developmental Biology,Chinese Academy of Sciences,Being 100101,China
  • Received:2009-05-08 Revised:2009-10-02 Published:2010-01-12 Published online:2009-11-17
  • Contact: Gai Jun-Yi, E-mail: sri@njau.edu.cn; Tel: 025-84395405

摘要:

作物基因组研究,包括基因或数量性状位点(QTL)定位、图位克隆以及物理图谱构建等,首先必须建立具有丰富标记信息的高密度遗传连锁图谱。由科丰1号和南农1138-2杂交组合衍生的重组自交系群体NJRIKY已经构建了4张大豆遗传连锁图谱,但由于遗传信息和标记数目不够充分,在基因和QTL作图时仍然存在精确度和准确度问题。为增加NJRIKY图谱密度,本研究在967SSR引物中获得了401个多态性SSR标记。结合其他分子数据,使用作图软件Mapmaker/exp 3.0b,获得一张含有553个遗传标记,25个连锁群,总长2 071.6 cM,平均图距3.70 cM的新遗传连锁图谱,其中SSR标记316个,RFLP标记197个,EST标记39个,形态标记1个。连锁群上大于20 cM的标记间隔由原来42个减少到2个。原图谱的3SMV抗性基因定位于D1b连锁群末端的开放区间上且仅与一个RFLP标记连锁,利用加密图谱对Rsc-3Rsc-7Rsc-9Rsc-13RsaRn1Rn37SMV抗性基因重定位,全部位于D1b连锁群,与相邻分子标记距离均小于6 cM,其中Rsc-9Rn1Rsa的距离小于1 cMRsc-13EST标记GMKF168a共分离。对本群体农艺性状进行QTL重定位,获得8个性状相关的42个主效QTL,其中20QTL遗传贡献率大于10%,与原图谱比较,新定位的各QTL的标记区间明显缩短,与相邻标记的连锁更加紧密。

关键词: 大豆, 遗传连锁图谱, SSR标记, QTL

Abstract:

A high-density genetic linkage map with informative markers is essential for plant genome analysis, including gene mapping, identification of quantitative trait locus (QTL), map-based cloning, and physical map construction. Though four genetic linkage maps for the recombinant inbred line population NJRIKY derived from (Kefeng 1×Nannong 1138-2) have been established already, there are still problems of precision and accuracy in mapping genes and QTLs due to insufficiency of genetic information and number of markers. A total of 401 polymorphic SSR markers were screened out from 967 ones for density-enhancement of the previous maps. Along with other marker data, a new genetic linkage map was constructed by using Mapmaker/Exp 3.0b, with 553 markers, including 316 SSR, 197 RFLP, 39 EST and one morphologic markers, spanning 25 linkage groups, covering total length 2 071.6 cM of the soybean genome, with an average marker interval distance of 3.70 cM. In comparison with the old map, the number of gaps larger than 20 cM decreased from forty-two to two on the enhanced map. Using this map to relocate the seven SMV resistant genes, Rsc-3, Rsc-7, Rsc-9, Rsc-13, Rsa, Rn1 and Rn3 were mapped on LG D1b again with distances to the flanking markers all less than 6 cM, among them, Rsc-9, Rn1 and Rsa less than 1 cM and Rsc-13 co-segregating with EST-SSR marker GMKF168a. After re-mapping the QTLs for eight agronomic traits, 42 QTLs were detected on 12 linkage groups, with 20 of them accounted for more than 10% of the total variation, respectively, and their marker intervals obviously shortened.

Key words: Soybean, Genetic linkage map, SSR markers, QTL

[1] Klos K L E, Paz M M, Marek L F, Cregan P B, Shoemaker R C. Molecular markers useful for detecting resistance to brown stem rot in soybean. Crop Sci, 2000, 40: 1445-1452

[2] Akkaya M S, Bhagwat A A, Cregan P B. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 1992, 132: 1131-1139

[3] Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464-1490

[4] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128

[5] Zhang D-S(张德水), Chen S-Y(陈受宜). DNA molecular markers, genome mapping and their applications for plant breeding. Biotechnol Bull (生物技术通报), 1998, 5: 15-22 (in Chinese with English abstract)

[6] Wu X-L(吴晓雷), He C-Y(贺超英), Wang Y-J(王永军), Zhang Z-Y(张志永), Dong-Fang Y(东方阳), Zhang J-S(张劲松), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Construction and analysis of a genetic linkage map of soybean. Acta Genet Sin (遗传学报), 2001, 28(11): 1051-1061 (in Chinese with English abstract)

[7] Wang Y-J(王永军), Wu X-L(吴晓雷), He C-Y(贺超英), Zhang J-S(张劲松), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). A soybean genetic linkage map constructed after the mapping population being tested and adjusted. Sci Agric Sin (中国农业科学), 2003, 36(11): 1254-1260 (in Chinese with English abstract)

[8] Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 2004, 108: 1131-1139

[9] Fu S X, Zhan Y, Zhi H J, Gai J Y, Yu D Y. Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica, 2006, 128: 63-69

[10] Wang C-E(王春娥), Gai J-Y(盖钧镒), Fu S-X(付三雄), Yu D-Y(喻德跃), Chen S-Y(陈受宜). Inheritance and QTL mapping of Tofu and soymilk output in soybean. Sci Agric Sin (中国农业科学), 2008, 41(5): 1274-1282 (in Chinese with English abstract)

[11] Wang F(王芳), Zhao T-J(赵团结), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Inheritance and QTL analysis of submergence tolerance at seedling stage in soybean (Glycine max L. Merr.). Acta Agron Sin (作物学报), 2008, 34(5): 748-753 (in Chinese with English abstract)

[12] Gai J, Liu Y, Lv H, Xing H, Zhao T, Yu D, Chen S. Identification, inheritance and QTL mapping of root traits related to tolerance to rhizo-spheric stresses in soybean (G. max L. Merr.). Frontiers Agric China, 2007, 1: 119-128

[13] Qi B, Kiror P, Zhao T, Yu D, Chen S, Gai J. Mapping quantitative trait loci associated with aluminum toxin tolerance in NJRIKY recombinant inbred line population of soybean (Glycine max). J Integr Plant Biol, 2008, 50: 1089-1095

[14] Xing G-N(邢光南), Zhou B(周斌), Zhao T-J(赵团结), Yu D-Y(喻德跃), Xing H(邢邯), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Mapping QTL of resistance to Megacota cribraria (fabricius) in soybean. Acta Agron Sin (作物学报), 2008, 34(3): 361-368 (in Chinese with English abstract)

[15] Geng L-Y(耿雷跃), Cui S-Y(崔士友), Zhang D(张丹), Xing H(邢邯), Gai J-Y(盖钧镒), Yu D-Y(喻德跃). QTL mapping and epistasis analysis for P-efficiency in soybean. Soybean Sci (大豆科学), 2007, 26(4): 460-466 (in Chinese with English abstract)

[16] Huang Z-W(黄中文), Zhao T-J(赵团结), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Lodging resistance indices and related QTL in soybean. Acta Agron Sin (作物学报), 2008, 34(04): 605-611 (in Chinese with English abstract)

[17] Huang Z-W(黄中文), Zhao T-J(赵团结), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Correlation and QTL mapping of biomass accumulation, apparent harvest index, and yield in soybean. Acta Agron Sin (作物学报), 2008, 34(6): 944-951 (in Chinese with English abstract)

[18] Cui S-Y(崔世友), Chen H-T(陈华涛), Yu D-Y(喻德跃). Mapping of QTL associated with leaf senescence in soybean. Sci Agric Sin (中国农业科学), 2007, 40(9): 2103-2108 (in Chinese with English abstract)

[19] Senior M L, Murphy J P, Goodman M M, Stuber C.W. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci, 1998, 38: 1088-1098

[20] Poland J A. Mapping of Aegilops tauschii derived leaf rust resistance genes in common wheat. J Nat Resour Life Sci Edu, 2003, 32: 8-11

[21] Zhang Z-Y(张志永), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). The molecular marker of gene Rsa resistant to SMV. Chin Sci Bull (科学通报), 1998, 43(20): 2197-2202 (in Chinese)

[22] Guo D-Q(郭东全), Wang Y-W(王延伟), Zhi H-J(智海剑), Gai J-Y(盖钧镒), Li H-C(李海朝), Li K(李凯). Inheritance and gene mapping of resistance to SMV strain group SC-13 in soybean. Soybean Sci (大豆科学), 2007, 26(1): 21-24 (in Chinese with English abstract)

[23] Wang Y-J(王永军), Dong-Fang Y(东方阳), Wang X-Q(王修强), Yang Y-L(杨雅麟), Yu D-Y(喻德跃), Gai J-Y(盖钧镒), Wu X-L(吴晓雷), He C-Y(贺超英), Zhang J-S(张劲松), Chen S-Y(陈受宜). Mapping of five genes resistant to SMV strains in soybean. Acta Genet Sin (遗传学报), 2004, 31(1): 87-90 (in Chinese with English abstract)

[24] Lincoln S E, Lander S L. "Mapmaker/Exp 3.0b and Mapmaker/QTL 1.1" Whitehead Institute of Medical Research, Cambridge, Mass., 1993

[25] Wang S, Basten C J, Zeng Z B. "Windows QTL Cartographer 2.5" Department of Statistics, North Carolina State University, Raleigh, NC, 2007

[26] Hyten D L, Song Q J, Zhu Y L, Choi I Y, Nelson R L, Costa J M, Specht J E, Shoemaker R C, Cregan P B. Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA, 2006, 103: 16666-16671
[27] Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits. I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!