欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1820-1831.doi: 10.3724/SP.J.1006.2010.01820

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

我国部分玉米自交系遗传关系和遗传结构解析

吴承来,张倩倩,董炳雪,张春庆*   

  1. 山东农业大学农学院 / 国家作物生物学重点实验室,山东泰安 271018
  • 收稿日期:2010-02-03 修回日期:2010-06-29 出版日期:2010-11-12 网络出版日期:2010-08-30
  • 作者简介:张春庆, E-mail: cqzhang@sdau.edu.cn, Tel: 05388242682
  • 基金资助:

    本研究由山东省自然科学基金项目(Y2007D52)和山东省良种工程项目(鲁农良种字[2008]6号)资助。

Analysis of Genetic Structure and Genetic Relationships of Partial Maize Inbred Lines in China

WU Cheng-Lai,ZHANG Qian-Qian,DONG Bing-Xue,ZHANG Chun-Qing*   

  1. State Key Laboratory of Crop Biology / College of Agriculture, Shandong Agricultural University, Tai’an 271018, China
  • Received:2010-02-03 Revised:2010-06-29 Published:2010-11-12 Published online:2010-08-30
  • About author:ZHANG Chun-Qing, E-mail: cqzhang@sdau.edu.cn, Tel: 05388242682

摘要: 玉米自交系遗传关系和遗传结构的解析,对自交系类群划分和杂交组配具有重要的指导意义。本文选用玉米基因组的112个SSR标记对我国97个玉米自交系进行遗传关系和遗传结构分析,并评价了遗传距离聚类和模型聚类方法在玉米自交系遗传关系研究中的应用价值。结果表明,模型聚类方法更适于玉米自交系的遗传关系研究。解析自交系的遗传基础发现,各类群中均有大量自交系含有其他类群的遗传成分。根据模型聚类结果,97个自交系被划分为PB、Reid、塘四平头和旅大红骨4个类群。Reid群与旅大红骨群的遗传关系最近,与塘四平头群遗传关系最远。为了实现杂种优势模式的简化,4个类群可被简化为3大种质类群[A(旅大红骨群与Reid群)、B(PB群)、C(塘四平头群)],或2大种质类群[A(旅大红骨群、Reid群、PB群)、B(塘四平头群)]。研究结果为自交系的改良和利用及杂种优势模式确定提供了理论基础。

关键词: 玉米, 自交系, 微卫星标记, 遗传关系, 遗传结构

Abstract: Knowledge about the population structure and relationships within and among maize inbred lines was important to improvement and utilization of maize inbred line. Distance-based cluster and model-based cluster methods were used to analyze the genetic structure and relationship of 97 maize inbred lines used in China with 112 microsatellite (simple sequence repeat, SSR) markers, evenly distributed over 10 chromosomes. Results showed that model-based cluster method was more suitable for maize inbred line clustering than distance-based cluster method, because the former could define the group of inbred lines more effectively than the latter. All inbred lines were grouped into four groups by model-based cluster method: Reid, Lüda red cob (LRC), PB and Tangsipingtou (SPT). According to the result of genetic structure component (Q-value), numerous inbred lines in each group were overlapped in genetic component with the other groups. Reid group kept minimum Nei’s genetic distance with LRC group, had most distant genetic relationship with SPT group. The results of genetic relationships among groups indicated that the four groups could be simplified into three (A: Reid, LRC; B: PB; C: SPT) or two (A: Reid, LRC, PB; B: SPT) potential heterotic groups. The defined population and the genetic component analysis of inbred lines provided the basis for improving the efficiency of hybrid breeding.

Key words: Maize, Inbred line, SSR, Genetic relationship, Genetic structure

[1]Wu J-F(吴景锋). A review on the germplasm bases of the main corn hybrids in china. Sci Agric Sin (中国农业科学), 1983, 16(2): 1-8 (in Chinese with English abstract)
[2]Zeng S-X(曾三省). The maize germplasm base of hybfids in china. Sci Agric Sin (中国农业科学), 1990, 23(4): 1-9 (in Chinese with English abstract)
[3]Wang Y-B(王懿波), Wang Z-H(王振华), Wang Y-P(王永普), Zhang X(张新), Lu L-X(陆利行). Studies on the heterosis utilizing models of main maize germplasms in China. Sci Agric Sin (中国农业科学), 1997, 30(4): 16-24 (in Chinese with English abstract)
[4]Wang Y-B(王懿波), Wang Z-H(王振华), Wang Y-P(王永普), Zhang X(张新), Lu L-X(陆利行). Division, utilization and the improvement of main germplasm heterosis of maize in China. Acta Agric Boreali-Sin (华北农学报), 1998, 13 (1): 74-80 (in Chinese with English abstract)
[5]Lan F-S(兰发盛), Teng Y-C(腾耀聪), Li D-B(李德宾), Zhang B(张彪), Tian S-J(田守均), Lu Q-Y(卢乔云). A preliminary study on heterotic groups among maize inbreds and it’s utilization. J Sichuan Agric Univ (四川农业大学学报), 1993, 11(1): 64-69 (in Chinese with English abstract)
[6]Chen Y-H(陈彦惠), Liu X-Z(刘新芝), Peng Z-B(彭泽斌), Zhang C-Z(张传贞), Gao S-L(高素玲), Chen Y-Q(陈秋元). Classification of heterosis populations and the construction of heterosis models for maize inbred lines. Acta Agric Univ Henanensis (河南农业大学学报), 1995, 29(4): 341-347 (in Chinese with English abstract)
[7]Li M-S(李明顺), Zhang S-H(张世煌), Li X-H(李新海), Pan G-T(潘光堂), Bai L(白丽), Peng Z-B(彭泽斌). Study on heterotic groups among maize inbred lines based on SCA. Sci Agric Sin (中国农业科学), 2002, 35(6): 600-605 (in Chinese with English abstract)
[8]Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J, Senior M L, Mitchell S E, Kresovich S, Ziegle J. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theor Appl Genet, 1997, 95: 163-173
[9]Senior M L, Murphy J P, Goodman M M, Stuber C W. Utility of SSRs for determining genetic similarities and relationships in maize using an agarosegel system. Crop Sci, 1998, 38: 1088-1098
[10]Li X-H(李新海), Fu J-H(傅骏骅), Zhang S-H (张世煌), Yuan L-X(袁力行), Li M-S(李明顺). Genetic variation of inbred lines of maize detected by SSR markers. Sci Agric Sin (中国农业科学), 2000, 33(2): 1-9 (in Chinese with English abstract)
[11]Li X-H(李新海), Yuan L-X(袁力行), Li X-H(李晓辉), Zhang S-H(张世煌), Li M-S(李明顺), Li W-H(李文华) . Heterotic grouping of 70 maize inbred lines by SSR markers. Sci Agric Sin (中国农业科学), 2003, 36(6): 622-627 (in Chinese with English abstract)
[12]Li Y, Du J, Wang T, Shi Y, Song Y, Jia J. Genetic diversity and relationships among Chinese maize inbred lines revealed by SSR markers. Maydica, 2002, 47: 93-101
[13]Lu H, Bernardo R. Molecular marker diversity among current and historical maize inbreds. Theor Appl Genet, 2001, 103: 613-617
[14]Yuan L-X(袁力行), Fu J-H(傅骏骅), Warburton L M, Li X-H(李新海), Zhang S-H (张世煌), Khairallah M, Liu X-Z(刘新芝), Peng Z-B(彭泽斌), Li L-C(李连城). Comparison of genetic diversity in maize inbreds based on RFLP, SSR, AFLP and RAPD markers. Acta Genet Sin (遗传学报), 2000, 27(8): 725-733 (in Chinese with English abstract).
[15]Yuan L-X(袁力行), Fu J-H(傅骏骅), Zhang S-H (张世煌), Liu X-Z(刘新芝), Peng Z-B(彭泽斌), Li X-H(李新海). Heterotic grouping of maize inbred lines using RFLP and SSR markers. Acta Agron Sin (作物学报), 2001, 27(2): 149-156 (in Chinese with English abstract)
[16]Fan X-M (番兴明), Zhang S-H (张世煌), Tan J (谭静), Li M-S(李明顺), Li X-H(李新海). Heterotic grouping of quality protein maize inbreds divided by SSR Markers. Acta Agron Sin (作物学报), 2003, 29(l): 105-110 (in Chinese with English abstract)
[17]Reif J C, Melchinger A E, Xia X C. Genetic distance based on simple sequence repeats and heterosis in tropical maize population. Crop Sci, 2003, 43: 1275-1282
[18]Rajab C, Abdolahadi H, Mohammad R G, Marilyn L W, Reza T A, Abolghasem M S. Use of SSR data to determine relationships and potential heterotic groupings within medium to late maturing Iranian maize inbred lines. Field Crops Res, 2006, 95: 212-222
[19]Enoki H, Sato H, Koinuma K. SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor Appl Genet, 2002, 104: 1270-1277
[20]Li L-H(李丽华), Wei X(魏昕), Pan G-T(潘光堂), Tang B-J(唐保军), Ding Y(丁勇), Zhao F-X(赵发欣). Genetic diversity analysis among new maize inbred lines revealed by SSR. J Maize Sci (玉米科学), 2009, 17(4): 24-28 (in Chinese with English abstract)
[21]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959
[22]Sun Y-W(孙友位), Li M-S(李明顺), Zhang D-G(张德贵), Xiao M-J(肖木辑), Zhang S-H (张世煌). Determine genetic diversity among 85 maize inbred lines using SSR markers. J Maize Sci (玉米科学), 2007, 15(6): 19-26 (in Chinese with English abstract)
[23]Xie C X, Warburton M, Li M S, Li X H, Xiao M J, Hao Z F, Zhao Q, Zhang S H. An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breed, 2008, 21: 407-418
[24]Saghai-Maroof M A, Soliman K, Jorgensen R A, Allard R W. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018
[25]Jochen C, Reif J C, Hamrit S, Heckenberger M, Schipprack W, Maurer H P, Bohn M, Melchinger A E. Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theor Appl Genet, 2005, 111: 906-913
[26]Rohlf F J. NTSYS: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. New York: State University of New York, 2000
[27]Pritchard J K, Wen W. Documentation for STRUCTURE Software: Version 2. 2003, http: //pritch.bsd.uchicago.edu
[28]Zhang J(张军), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Analysis of genetic structure differentiation of released soybean cultivar population and specificity of subpopulations in China. Sci Agric Sin (中国农业科学), 2009, 42(6): 1901-1910 (in Chinese with English abstract)
[29]Evanno G, Regnaut S, Goudet J. Detecting the number of cluster of individuals using the software structure: A simulation study. Mol Ecol, 2005, 14: 2611-2620
[30]Yeh F C, Yang R C. POPGENE Version 1. 31, available at http://www.ualberta.ca/fyeh/popgene, 1999
[31]Falush D, Wirth T, Linz B, Pritchard J K, Stephens M. Traces of human migrations in Helicobacter pylori populations. Science, 2003, 299: 1582-1585
[32]Chen H-J(陈红菊), Yue Y-S(岳永生), Fan X-Z(樊新忠), Zhang C-S(张传生), Du L-X(杜立新). A Comparative Study of Genetic Distance and Clustering Analysis among Shandong Indigenous Chicken Breeds. Acta Veterinaria et Zootechnica Sinica (畜牧兽医学报), 2004, 35(1): 33-36 (in Chinese with English abstract)
[33]Zong X-X(宗绪晓), Guan J-P(关建平), Gu J(顾竟), Wang H-F(王海飞), Ma Y(马钰). Differentiation on population structure and genetic diversity of pea core collections separately constituted from Chinese landraces and international genetic resources. Journal of Plant Genetic Resources (植物遗传资源学报), 2009, 10(3): 347-353 (in Chinese with English abstract)
[34]Verónica V L, Poggio L, Confalonie V A. Microsatellite variation in maize landraces from Northwestern Argentina: genetic diversity, population structure and racial affiliations. Theor Appl Genet 2009, 119: 1053-1067
[35]Qin J(秦君), Li Y-H(李英慧), Liu Z-X(刘章雄), Luan W-J(栾维江), Yan Z(闫哲), Guan R-X(关荣霞), Zhang M-C(张孟臣), Chang R-Z(常汝镇), Li G-M(李广敏), Ma C-Y(马峙英), Qiu L-J(邱丽娟). Genetic structure and diversity of soybean germplasm in Heilongjiang, China. Acta Agron Sin (作物学报), 2009, 35(2): 228-238 (in Chinese with English abstract)
[36]Zheng D-H(郑大浩), Li Y-R(李艳茹), Jin F-X(金锋学), Jiang J-J(蒋基建). Pedigree and germplasm base of inbreds of the Lancaster heterotic group of maize in China. Sci Agric Sin (中国农业科学), 2002, 35(7): 750-757 (in Chinese with English abstract)
[37]Xiao M-J(肖木辑), Li M-S(李明顺), Sun Y-W(孙有位), Li X-H(李新海), Zhang S-H(张世煌). Genetic diversity revealed by SSR among maize inbred lines used predominantly in Liaoning province. J Maize Sci (玉米科学), 2006, 14(1): 33-36 (in Chinese with English abstract)
[38]Lei K-R(雷开荣), Wu H(吴红), Chen W-J(陈文俊), Lin Q(林清), Chen X(陈旭), Jiang Z-C(蒋志诚). Analysis of genetic structure of selected lines from temperate Zone×Tropical Zone maize by SSR marker. Chin Agric Sci Bull (中国农学通报), 2008, 24(12): 86-91 (in Chinese with English abstract)
[39]Li H-Y(李会勇), Wang L-F(王利锋), Tang B-J(唐保军), Cheng Z-Q(程泽强), Wang Z-H(王振华), Tie S-G(铁双贵). Research on the genetic structure and heterosis of Zhengdan958. J Maize Sci (玉米科学), 2009, 17(1): 28-31 (in Chinese with English abstract)
[40]Ding Z-H(丁照华), Wu H-F(吴洪飞), Liu Z-X(刘治先), Wang L-M(汪黎明), Meng Z-D(孟昭东), Yang F(杨菲), Zhang F-J(张发军). Germplasm analysis of main corn hybrids approved in Shandong Province. Shandong Agric Sci (山东农业科学), 2008, (6): 31-34 (in Chinese with English abstract)
[41]Li C-H(李春辉), Cai Z (才卓), Li F-R(李凤任), Lu Y-W(卢亚文), Liu Y-C (柳迎春). The effect of Tangsipingtou on maize breeding in Jilin province. J Maize Sci (玉米科学), 2008, 16(6): 11-14 (in Chinese with English abstract)
[42]Li D-H(李登海), Mao L-H(毛丽华), Yang J-S(杨今胜), Liu J-G(柳京国), Zhang Y-H(张永慧). Breeding process and utilization of excellent maize inbred line 478. J Laiyang Agric Coll (莱阳农学院学报), 2005, 22(3): 159-164 (in Chinese with English abstract)
[43]Zhang S-H(张世煌), Peng Z-B (彭泽斌), Li X-H(李新海). Heterosis and germplasm enhancement, improvement and development of maize. Sci Agric Sin (中国农业科学), 2000, 33(suppl): 34-39 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!