欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (4): 565-573.doi: 10.3724/SP.J.1006.2010.00565

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

理化诱变小豆京农6号突变体的鉴定

佟星1,赵波1,金文林1,曾潮武1,2,刘红霞1,2,吴宝美1,濮绍京1,陈学珍1,潘金豹1,万平1,*   

  1. 1 北京农学院植物科学技术系,北京1022062 甘肃农业大学农学院,甘肃兰州 730070
  • 收稿日期:2009-09-27 修回日期:2010-01-09 出版日期:2010-04-12 网络出版日期:2010-02-09
  • 通讯作者: 万平, E-mail: pingwan3@yahoo.com.cn
  • 基金资助:

    本研究由北京市教委人才强教-人才引进计划项目(PXM2007-014207-04453), 北京市教委拔尖创新人才项目(PXM2007-014207-021717)和北京农学院引进人才项目(9997116025)资助。

Identification of Mutants from Adzuki Bean (Vigna angularisi) Jingnong 6 seed Induced by Physical and Chemical Agents

TONG Xing1,ZHAO Bo1,JING Wen-Lin1,ZENG Chao-Wu1,2,LIU Hong-Xia1,2,WU Bao-Mei1,PU Shao-Jing1,CHEN Xue-Zhen1,PAN Jin-Bao1,WAN Ping1*   

  1. 1 College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; 2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
  • Received:2009-09-27 Revised:2010-01-09 Published:2010-04-12 Published online:2010-02-09
  • Contact: FANG Ping, E-mail: pingwan3@yahoo.com.cn

摘要:

选用小豆品种京农6号种子,分别采用甲基磺酸乙酯(EMS) (0.5%0.9%1.4%处理12 h24 h)、电子束(100300600 Gy)60Co-γ (400 Gy)诱变处理,将处理后的种子种于大田,鉴定后代植株性状的变异。观察表明, EMS诱变的变异类型最丰富、60Co-γ射线次之、电子束产生的变异类型较单一。EMS处理小豆以浓度0.5%0.9%处理24 h为宜;0.5%EMS处理的粒色和荚色变异突出,有鲜红、黄白、绿白粒色和黑荚、褐荚、黑褐荚变异;0.9%处理的叶形变异突出,有鸡爪叶、剑叶、肾形叶、小密叶等突变类型;电子束诱变后,M2变异率分别为4.09%3.64%2.22%400 Gy 60Co-γ射线处理种子,后代变异率为7.23%。通过两年的鉴定筛选,获得937EMS诱变M3代株系,93460Co-γ射线和电子束诱变M2代株系,已得到株高、叶形、叶色、粒形、粒色、荚色、无分枝、多分枝、叶簇生、分枝簇生、光叶、蔓生、有限结荚习性、株型松散、育性、成熟特性等突变体材料1 490份。本研究为小豆基因遗传分析、基因定位与克隆及其进一步的基因功能分析奠定了基础,为小豆育种提供了重要的材料。

关键词: 小豆, 理化诱变, 突变体, 突变体鉴定

Abstract:

Mutational approaches have been widely exploited in breeding, genetics and gene function researches. We firstly developed a large collection of mutants from adzuki bean (Vigna angularisi) cultivar Jingnong 6 treated by 0.5%, 0.9%, and 1.4% EMS for 12 h and 24 h, 400 Gy 60Co-γ ray and 100 Gy, 300 Gy, and 600 Gy electron beam. The results indicated that the maximum mutantions were induced by 0.5% or 0.9% EMS for 24 h. More seed color mutants including cream-colored and light red seeds, pod color mutants such as brown, dark brown and black pods were produced by o.5% EMS. Needle leaf, sword, kidney-shaped and small heart-shaped leaf mutants were obtained by 0.9% EMS treatment. The percentage of mutants with 100, 300, and 600 Gy electron beam treatment were 4.09%, 3.64%, and 2.22% respectively. The percentage of mutants treated by 400 Gy 60Co-γ ray was 7.23%. Nine hundred thirty-seven EMS-induced M3 lines and nine hundred thirty-four M2 lines radiated by 60Co-γ ray and electron beam were generated. A total of 1 490 mutants were collected. Mutations included in plant height, plant architecture, leaf shape and color, leaf size, seed shape and color, seed size, pod color, branching type and number, bushy leaf or branch, sprawl, definite growth, sterile, early and late mature, flowering time. The mutant populations are very useful to genetic analysis of gene, gene mapping and cloning, and further the research on functional genomics. These mutants will be useful to serve the adzuki bean improvement.

Key words: Adzuki bean(Vigna angularisi), EMS and irradiation mutagenesis, Mutants, Mutant identification

[1] Schoof H, Karlowski W M. Comparison of rice and Arabidopsis annotation. Curr Opin Plant Biol, 2003, 6: 106-112

[2] Cannon S B, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Scheix T, Spannagl M, Monaghan E, Nicholson C, Humphray S J, Schoof H, Mayer K F, Rogers J, Quetier F, Oldroyd G E, Debellé F, Cook D R, Retzel E F, Roe B A, Town C D, Tabata S, Van de Peer Y, Young N D. Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA, 2006, 103: 14959-14964

[3] Perry J A, Wang T L, Welham T J, Gardner S, Pike J M, Yoshida S, Parniske M. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonica. Plant Physiol, 2003, 131: 866-871

[4] Chen X F, Laudeman T W, Rushton P J, Spraggins T A, Timko M P. CGKB: An annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinformatics, 2007, 8: 129

[5] Slade A J, Knauf V C. TILLING moves beyond functional genomics into crop improvement. Transgenic Res, 2005, 14: 109-115

[6] Till B J, Reynolds S H, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo C A, Enns L C, Odden A R, Greene E A, Comai L, Henikoff S. Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol, 2004, 4: 12

[7] Cooper J L, Till B J, Laport R G, Darlow M C, Kleffner J M, Jamai A, El-Mellouki T , Liu S M, Ritchie R, Nielsen N, Bilyeu K D, Meksem K, Comai L, Henikoff S. TILLING to detect induced mutations in soybean. BMC Plant Biol, 2008, 8: 9

[8] Jiang S-Y(江树业). Rice mutant population and its applications on functional genomics. Mol Plant Breed (分子植物育种), 2003, 1(2): 137-150 (in Chinese with English abstract)

[9] Caldwell D G, McCallum N, Shaw P, Muehlbauer G J, Marshall D F, Waugh R. A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J, 2004, 40: 143-150

[10] Dalmais M, Schmidt J, Signor C L, Moussy F, Burstin J, Savois V, Aubert G, Brunaud V, Oliveira Y de, Guichard C, Thompson R, Bendahmane A. UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol, 2008, 9: R43

[11] Wu J L, Lei C L, Wu C J, Baraoidan M, Boredoes A, Madamba S, Ramos M, Portugal A, Ulat V, Bruskiewich R, Khush G, Leung H. Chemical and irradiation induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol, 2005, 59: 85-97

[12] Leung H, Wu C, Baraoidan M, Bordeos A, Ramos M, Madamba S, Cabauatan P, Cruz C V, Portugal A, Reyes G, Bruskiewich R, Mclaren G, Lafitte R, Gregorio G, Bennett J, Brar D, Khush G, Schnable P, Wang G, Leach J. Deletion Mutants Functional Genomics: Progress in Phenotype, Sequence Assignment and Database Development. In: Gurdev S K, Brar D S, Bill H, eds. Rice Genetics IV. Philippines: International Rice Research Institute, 2000. pp 18-19

[13] Sun J-Y(孙加焱), Tu J-D(涂进东), Fan S-W(范叔味), Wu J-G(吴建国), Shi C-H(石春海). The screening of mutants induced by physical and chemical factors and construction of mutant population for Brassica napus L. Hereditas (Beijing) (遗传), 2007, 29(4): 475-482(in Chinese with English abstract)

[14] Ye J(叶俊), Wu J-G(吴建国), D J(杜婧), Zheng X(郑希), Zhang Z(张志), Shi C-H(石春海). The screening of mutants and construction of mutant population for cultivar “9311” in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2006, 32(10): 1525-1529 (in Chinese with English abstract)

[15] Han S-Y(韩锁义), Zhang H-Y(张恒友), Yang M-L(杨玛丽), Zhao T-J(赵团结), Gai J-Y(盖钧镒), Yu D-Y(喻德跃). Screening of mutants and construction of mutant population in soybean Nannong 86-4. Acta Agron Sin (作物学报), 2007, 33(12): 2059-2062 (in Chinese with English abstract)

[16] Udvardi M K, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang J Y, Benedito V, Hofer J M I, Chueng F , Town C D. Legume transcription factors: Global regulators of plant development and response to the environment. Plant Physiol, 2007, 144: 538-549

[17] Searle l R, Men A E, Laniya T S, Buzas D M, Iturbe-Ormaetxe I, Carroll B J, Gresshoff P M. Long-distance signaling in nodulation directed by a clavata1-like receptor kinase. Science, 2003, 299: 109-112

[18] Murray J D, Karas B J, Sato S, Tabata S, Amyot L, Szczyglowsk K. A cytokinin perception mutant colonized by rhizobium in the absence of nodule organogenesis. Science, 2007, 315: 101-103

[19] Rao G. Efficiency and effectiveness of gamma rays and EMS in rice. Cytologia, 1977, 42: 443-450

[20] Koornneef M, Dellaert L W, Van der Veen J H. EMS and radiation-induce mutation frequencies at individual loci in Arabidopsis thaliana Heynh. Mutation Res, 1982, 93: 109-123

[21] Lü D-H(吕东辉). A word or two about the application of induced mutation technology on soybean breeding. Soybean Bull (大豆通报), 1999, 4: 17 (in Chinese)

[22] Zou W-M(邹伟民), Wu Y-Y(伍育源), Li X-J(黎学军), Diao S-M(刁绍谋). Irradiation effects of lasers and gamma rays on beanmutation. Optoelectronics Laser (光电子·激光), 1993, 4(2): 127-130 (in Chinese with English abstract)

[23] Lee D, Kim T, Lee S, Kim H, Rhee S, Yoon B, Pfeifer G, Lee C. Mutations induced by 1,3-butadiene metabolites, butadiene diolepoxide and 1,2,3,4-dipoxybutane at the Hprt locus in CHO-K1 cells. Mol Cells,2002, 31: 411-419

[24] Wei Y-C(魏玉昌), Du L-E(杜连恩), Yu X-P(于秀普), Wu M-Q(吴鸣岐). Research on mutative effect of EMS on soybean zygote. Chin J Oil Crop Sci (中国粮油学报), 1999, 21(3): 35-37 (in Chinese with English abstract)

[25] Zhou L-B(周利斌), Li W-J(李文建), Li Q(李强), Zhou G-M(周光明), Feng Y(冯岩), Gao Q-X(高清祥). Radiobiological effects of 12C6+ ion and electron beams with different fluence on astragalus pall dry seeds. Acta Laser Biol Sin (激光生物学报), 2003, 12(5): 350-354 (in Chinese with English abstract)

[26] Jin W-L(金文林), Chen X-Z(陈学珍), Yu S-F(喻少帆). A Study on the radioactive mutation on ten seeds of Adzuki bean by 60Co-γ ray. Acta Agric Nucl Sin (核农学报), 2000, 14(3): 134-140 (in Chinese with English abstract)

[27] Menda N, Semel Y, Peled D, Eshed Y, Zamir D. In silico screening of a saturated mutation library of tomato. Plant J, 2004, 38: 861-872

[28] Miyao A, Iwasaki Y, Kitano, Itoh J I, Maekawa M, Murata K, Yatou O, Hirochika H. A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Biol, 2007, 63: 625-635


[29] Rhee S Y, Beavis W, Berardini T Z, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems D C, Wu Y, Xu I., Yoo D, Yoon J, Zhang P. The Arabidopsis information resource (TAIR): A model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucl Acids Res, 2003, 31: 224-228


[30] Carroll B J, McNeil D L, Gresshoff P M. Isolation and properties of soybean
[Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA, 1985, 82: 4162-4166


[31] Wu J L, Lei C L, Wu C J, Baraoidan M, Boredoes A, Madamba S, Ramos M, Portugal A, Ulat V, Bruskiewich R, Khush G, Leung H. Chemical and irradiation induced mutants of Indica Rice IR64 for forward and reverse genetics. Plant Mol Biol, 2005, 59: 85-97


[32] Mukherjee I, Nathan H, Campbell, Joshua S A, Erin L C. Expressin profile of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta, 2006, 223: 1178-1190


[33] Li L H, Cheng X D, Ling H Q. Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Plant Mol Biol, 2004, 54: 125-136

[34] Brian M W, Dale G B, David J E. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol, 2002, 129: 85-94

[35] Naimatullah B, Hirotaka Y, Naoko K N, Hiromi N, Satoshi M. Cloning an iron-regulated metal transporter from rice. J Exp Bot, 2002, 53: 1677-1682

[36] Yuan Y X, Zhang J, Wang D W, Ling H Q. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res, 2005, 15: 613-621
[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[3] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[4] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[5] 文钦, 贾思思, 王加峰, 黄翠红, 王慧, 陈志强, 郭涛. 水稻单倍体诱导基因OsMATL突变体的创制与分析[J]. 作物学报, 2021, 47(5): 827-836.
[6] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[7] 项洪涛, 李琬, 郑殿峰, 王诗雅, 何宁, 王曼力, 杨纯杰. 幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响[J]. 作物学报, 2021, 47(3): 494-506.
[8] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[9] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[10] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[11] 王南,祁显涛,刘昌林,谢传晓,朱金洁. 基于CRISPR/Cas9核糖核蛋白体DNA定点内切酶体外活性建立高效基因型分析技术[J]. 作物学报, 2020, 46(7): 978-986.
[12] 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660.
[13] 宋欣冉, 胡书婷, 张凯, 崔则瑾, 李建生, 杨小红, 白光红. 玉米籽粒突变体dek101的表型分析和精细定位[J]. 作物学报, 2020, 46(12): 1831-1838.
[14] 张之昊, 王俊, 刘章雄, 邱丽娟. 基于BSA-Seq技术挖掘大豆中黄622的多小叶基因[J]. 作物学报, 2020, 46(12): 1839-1849.
[15] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!