欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (12): 1839-1849.doi: 10.3724/SP.J.1006.2020.04075

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于BSA-Seq技术挖掘大豆中黄622的多小叶基因

张之昊1,2(), 王俊1, 刘章雄2,*(), 邱丽娟1,2,*()   

  1. 1长江大学农学院, 湖北荆州 434025
    2中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2020-03-24 接受日期:2020-08-19 出版日期:2020-12-12 网络出版日期:2020-09-02
  • 通讯作者: 刘章雄,邱丽娟
  • 基金资助:
    国家自然科学基金项目(31630056)

Mapping of an incomplete dominant gene controlling multifoliolate leaf by BSA-Seq in soybean (Glycine max L.)

ZHANG Zhi-Hao1,2(), WANG Jun1, LIU Zhang-Xiong2,*(), QIU Li-Juan1,2,*()   

  1. 1School of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2020-03-24 Accepted:2020-08-19 Published:2020-12-12 Published online:2020-09-02
  • Contact: LIU Zhang-Xiong,QIU Li-Juan
  • Supported by:
    National Natural Science Foundation of China(31630056)

摘要:

栽培大豆(Glycine max)叶片一般为三出复叶, 也有个别品种或植株突变体产生4~7个小叶, 为多小叶。复叶的形成使植物对外界环境的适应能力增强, 对大豆多小叶相关基因的挖掘和研究有助于改善大豆农艺性状和产量表现。本研究从大豆栽培品种中品661的突变体库中鉴定出一个多小叶突变体——中黄622, 每个复叶有4~9个小叶。利用该突变体与中品661配制组合, 分别于北京和海南调查F2和F2:3植株叶片表型, 结果表明, 多小叶性状受1对不完全显性基因控制。采用BSA-seq方法进行定位, 利用F2正常三出复叶和多小叶个体分别构建混池, 测序结果与参考基因组平均比对效率为98.83%, 平均覆盖深度为32.75×, 基因组覆盖度为99.22%。ED方法关联分析发现, 在11号染色体定位到2个区域, 总长度为5.29 Mb, 共包含1103个基因。根据SNP-index方法关联分析, 当置信度为0.99时, 在11号染色体鉴定出3个区域, 总长度为3.42 Mb, 共包含701个基因。2种关联分析方法同时定位的基因有690个, 亲本之间存在SNP的基因有6个。本研究结果为大豆多小叶基因图位克隆奠定了基础。

关键词: 大豆, 突变体, 混池测序

Abstract:

The leaves of cultivated soybean (Glycine max L.) are comprising of three leaflets in general, but there are also individual varieties or mutants which have a high frequency of compound leaves with 4-7 leaflets, named multifoliolate leaves. Compound leaf formation enhances the plant's ability to adapt to the external environment. Study of related genes to multifoliolate leaves might contribute to the improvement yield level of and soybean agronomic traits. In this study, a multifoliolate leaf mutant Zhonghuang 622 was identified from the mutant library of soybean cultivar Zhongpin 661, which had 4-9 leaflets in each compound leaf. The compound leaf phenotypes of F2 and F2:3 population from a cross between Zhongpin 661 and Zhonghuang 622 were investigated in Beijing and Hainan, respectively. Analysis of phenotypic data from F2 and F2:3 population revealed that the multifoliolate leaf trait was controlled by an incomplete dominant gene. BSA-Seq method was used for gene mapping. The two bulks of normal trifoliate and multifoliolate individuals in F2 population were constructed and sequenced for an average depth of 32.75×, which covered 99.22% genome compared to the reference genome. Through correlation analysis of mixed pool sequencing results by ED method, two regions were located on chromosome 11, with a total length of 5.29 Mb and a total length of 1103 genes. Three regions were identified on chromosome 11 at confidence of 0.99, with a total length of 3.42 Mb and a total of 701 genes by the association analysis of SNP-index method. There were 690 genes located simultaneously and six SNP genes between parents by the two association analysis methods. These results lay the foundation for map-based cloning of the genes related to compound leaf development.

Key words: soybean, mutant, BSA-Seq

图1

BSA-Seq数据分析流程"

表1

F2群体中不同基因型和表型的单株数目"

表型
Phenotype
基因型Genotype 期望比
Expectation ratio
χ2 P0.05, 0.01
lf alf a lf alf b lf blf b
I 54 2 0
II 0 99 0
III 0 4 80
总数Total 54 105 80 1︰2︰1 9.18 5.99, 9.27

图2

利用2种关联方法鉴定多小叶基因候选区间 A: ED关联分析结果, 横坐标为染色体位置, 纵坐标代表拟合后的欧式距离(ED)值的5次方, 黑色的线为拟合后的ED的5次方作关联值, 红色的虚线代表显著性关联阈值。B: SNP-index关联分析结果, 横坐标为染色体位置, 黑色的线为拟合后的ΔSNP-index值, 红色的线代表置信度为0.99的阈值线, 蓝色的线代表置信度为0.95的阈值线, 绿色的线代表置信度为0.90的阈值线。2种关联分析结果均表明, 与多小叶相关的关联区域位于11号染色体末端。"

表2

利用不同方法在11号染色体获得关联区域"

关联分析方法
Association analysis method
染色体
Chromosome
关联区域
起始位置
Start of associated regions
关联区域
终止位置
End of associated regions
关联区域
大小
Associated region size (Mb)
关联区域内的
基因数量
Gene number in the associated regions
欧氏距离
Euclidean distance (ED)
Chr. 11 0 4,150,000 4.15 896
Chr. 11 5,570,000 6,710,000 1.14 207
总计Total 5.29 1103
SNP-index Chr. 11 0 250,000 0.25 44
Chr. 11 1,510,000 3,480,000 1.97 439
Chr. 11 5,570,000 6,770,000 1.20 218
总计Total 3.42 701
2种方法交集
Intersection of two methods
Chr. 11 0 250,000 0.25 44
Chr. 11 1,510,000 3,480,000 1.97 439
Chr. 11 5,570,000 6,710,000 1.14 207
总计Total 3.36 690

图3

样品间SNP及关联信号在染色体上的分布 从外到里依次为: 第1圈: 染色体坐标; 第2圈: 基因分布; 第3圈: SNP密度分布; 第4圈: ED值分布; 第5圈: ΔSNP-index值分布。"

表3

引物序列和信息"

引物名称
Primer ID
上游引物序列
Forward primer (5°-3°)
下游引物序列
Reverse primer (5°-3°)
产物大小
Product size (bp)
检测位点数目
Number of detection sites
SNP 1 GCCGTAGCACTTCACTCATTCA ATGTTCTATAAGCCGTTTTTTGGAAG 5633 5
SNP 2 TCTACTCGCAAAAGGCACAG CATTTATATGTTCGTCAATATTTAG 7016 1
SNP 3 GGAATGCCAATGGGCTTTAATT GATCTTGCTTACCAATTTCTCG 1247 3

表4

对区间内部分SNP位点进行鉴定"

染色体
Chr.
SNP位点
SNP loci
参考碱基
Reference base
突变碱基
Altered base
混池read值Bulk read value in mixed pool SNP质量评价
SNP quality evaluation
鉴定结果
Appraisal results
中品661
Zhongpin 661
中黄622
Zhonghuang 622
正常叶混池
Normal leaf mixing pool
多小叶混池
Multi-leaflet mixing pool
Chr.11 1738094 C T 14,7 8,0 32,0 42,0 低 Low 假False
Chr.11 1738120 C T 14,5 8,0 33,0 39,0 低Low 假False
Chr.11 1738157 G A 10,0 9,1 32,5 38,4 低Low 假False
Chr.11 1738175 A T 9,0 9,1 34,9 39,6 低Low 假False
Chr.11 1738511 A T 20,0 9,1 37,4 39,10 低Low 假False
Chr.11 1947868 A T 12,0 0,7 27,0 0,48 高High 真True
Chr.11 1964348 C T 9,0 5,1 42,5 41,7 低Low 假False
Chr.11 1964460 T C 8,0 9,5 37,28 44,28 低Low 假False
Chr.11 1964710 T A 9,0 6,2 36,8 38,8 低Low 假False

表5

2种方法共定位区间内亲本之间SNP类型"

SNP位点
SNP loci
碱基类型 Base type 突变类型
Mutation type
基因ID
Gene ID
基因功能注释
Annotated function
中品661 Zhongpin 661 中黄622 Zhonghuang 622
1947868 A T 非同义SNV
Nonsynonymous SNV
Glyma.11G027100 同源盒蛋白knotted-1-like-7
Homeobox protein knotted-1-like-7
2489820 G A 同义SNV
Synonymous SNV
Glyma.11G034100 亮氨酸-tRNA连接酶/亮氨酰-tRNA合成酶
Leucine-tRNA ligase/Leucyl-tRNA synthetase
2954231 G A 非同义SNV
Nonsynonymous SNV
Glyma.11G040200 无意义转录物1的调节因子(UPF1, RENT1)
Regulator of nonsense transcripts 1 (UPF1, RENT1)
3156378 G A 非同义SNV
Nonsynonymous SNV
Glyma.11G043100 At-hook motif核定位蛋白21相关
At-hook motif nuclear localized protein 21- related
3334413 C A 基因上游
Upstream
Glyma.11G045200 核基质构成蛋白1蛋白相关
Nuclear matrix constituent protein 1-like protein-related
6288434 C T 内含子
Intron
Glyma.11G083800 酰基激活酶1, 过氧化物酶体相关
Acyl-activating enzyme 1, peroxisomal-related

图4

6个候选基因的表达图谱 方块内颜色显示候选基因表达水平: 蓝色最低, 白色居中, 红色最高。"

[1] Vogel S . Leaves in the lowest and highest winds: temperature, force and shape. New Phytol, 2009,183:13-26.
doi: 10.1111/j.1469-8137.2009.02854.x pmid: 19413689
[2] 宗春美, 岳岩磊, 邵广忠, 童淑媛, 徐显利, 杜震宇, 任海祥 . 多小叶源对大豆光合特性和产量的影响. 大豆科学, 2010,29:627-626.
Zong C M, Yue Y L, Shao G Z, Tong S Y, Xu X L, Du Z Y, Ren H X . Effects of multifoliolate compound leaf on photosynthetic characteristics and yield of soybean. Soybean Sci, 2010,29:627-626 (in Chinese with English abstract).
[3] Fehr W R . Genetic control of leaflet number in soybeans. Crop Sci, 1972,12:221-224.
doi: 10.2135/cropsci1972.0011183X001200020023x
[4] Jeong S C, Kim J H, Bae D N . Genetic analysis of the Lf1 gene that controls leaflet number in soybean. Theor Appl Genet, 2017,130:1685-1692.
doi: 10.1007/s00122-017-2918-0 pmid: 28516383
[5] Devine T E . The Pd2 and Lf2 loci define soybean linkage group 16. Crop Sci, 2003,43:2028-2030.
doi: 10.2135/cropsci2003.2028
[6] Seversike T M, Ray J D, Shultz J L, Purcell L C . Soybean molecular linkage group B1 corresponds to classical linkage group 16 based on map location of the lf2 gene. Theor Appl Genet, 2008,117:143-147.
doi: 10.1007/s00122-008-0759-6
[7] 傅来卿 . 大豆双复叶和多小叶突变体的研究. 大豆科学, 1986,5:283-288.
Fu L Q . Study of mutants with opposite trifoliate leaves and multi-leaflet leaves in soybean. Soybean Sci, 1986,5:283-288 (in Chinese with English abstract).
[8] 王克晶, 李福山, 周涛, 许占有 . 来源于野生大豆的多小叶性状遗传分析. 大豆科学, 2001,20:22-25.
Wang K J, Li F S, Zhou T, Xu Z Y . Inheritance of a five leaflet character arising from wild soybean (Glycine soja Sieb. et Zucc.) in soybeans (G. max (L.) Merr.). Soybean Sci, 2001,20:22-25 (in English with Chinse abstract).
[9] Nawy T, Bayer M, Mravec J, Friml J, Birnbaum K D, Lukowitz W . The GATA factor HANABA TARANU is required to position the proembryo boundary in the early Arabidopsis embryo. Dev Cell, 2010,19:103-113.
doi: 10.1016/j.devcel.2010.06.004 pmid: 20643354
[10] Gallavotti A, Long J A, Stanfield S, Yang X, Jackson D, Vollbrecht E, Schmidt R J . The control of axillary meristem fate in the maize ramosa pathway. Development(Cambridge, England), 2010,137:2849-2856.
[11] Vlad D, Kierzkowski D, Rast M I, Vuolo F, Ioio R D, Galinha C, Gan X, Hajheidari M, Hay A, Smith R S, Huijser P, Bailey C D, Tsiantis M . Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science, 2014,343:780-783.
doi: 10.1126/science.1248384 pmid: 24531971
[12] Stewart G C, Roeder A H K, Patrick S, Chris S, Wolfgang L, Hector C . A genetic screen for mutations affecting cell division in the Arabidopsis thaliana embryo identifies seven loci required for cytokinesis. PLoS One, 2016,11:e0146492.
doi: 10.1371/journal.pone.0146492 pmid: 26745275
[13] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R . Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012,30:174-178.
doi: 10.1038/nbt.2095 pmid: 22267009
[14] Abe A1, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R . QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013,74:174-183.
doi: 10.1111/tpj.12105
[15] Zhang H, Wang X, Pan Q, Li P, Liu Y, Lu X, Zhong W, Li M, Han L, Li J, Wang P, Li D, Liu Y, Li Q, Yang F, Zhang Y M, Wang G, Li L . QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol Plant, 2019,12:426-437.
doi: 10.1016/j.molp.2018.12.018 pmid: 30597214
[16] Klein H, Xiao Y, Conklin P A, Govindarajulu R, Kelly J A, Scanlon M J, Whipple C J, Bartlett M . Bulked-segregant analysis coupled to whole genome sequencing (BSA-Seq) for rapid gene cloning in maize. G3: Genes Genomes Genet, 2018,8:3583-3592.
[17] Song Q J, Jenkins J, Jia G F, Hyten D L, Pantalone V, Jackson S A . Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016,17:33.
doi: 10.1186/s12864-015-2344-0 pmid: 26739042
[18] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A , The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010,20:1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[19] Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M . A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012,6:80-92.
doi: 10.4161/fly.19695
[20] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J . MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013,23:687-697.
doi: 10.1101/gr.146936.112
[21] Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R . MutMap+: Genetic mapping and mutant identification without crossing in rice. PLoS One, 2013,8:e68529.
doi: 10.1371/journal.pone.0068529 pmid: 23874658
[22] Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J . Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997,25:3389-3402.
doi: 10.1093/nar/25.17.3389 pmid: 9254694
[23] Deng Y, Li J Q, Wu S F, Zhu Y P, Chen Y W, He F C . Integrated nr database in protein annotation system and its localization. Comput Engineer, 2006,32:71-72.
[24] Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G . Gene ontology: tool for the unification of biology. Nat Genet, 2000,25:25-29.
doi: 10.1038/75556 pmid: 10802651
[25] Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M . The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004,32:D277-D280.
doi: 10.1093/nar/gkh063 pmid: 14681412
[26] Tatusov R L, Galperin M Y, Natale D A, Koonin E V . The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res, 2000,28:33-36.
doi: 10.1093/nar/28.1.33 pmid: 10592175
[27] 杨霞, 高金珊, 杨素欣 . 豆科复叶发育分子遗传机制的研究进展. 植物生理学报, 2017,53:905-915.
Yang X, Gao J S, Yang S X . Progress of molecular mechanism of compound leaf development in legume plants. Plant Physiol Commun, 2017,53:905-915 (in Chinese with English abstract).
[28] Long J A, Moan E I, Medford J I, Barton M K . A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature (London), 1996,379:66-69.
doi: 10.1038/379066a0
[29] Bharathan G, Goliber T E, Moore C, Kessler S, Pham T, Sinha N R . Homologies in leaf form inferr ed from KNOXI gene expression during development. Science, 2002,296:1858-1860.
doi: 10.1126/science.1070343 pmid: 12052958
[30] Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S . A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell, 1994,6:1859-1876.
doi: 10.1105/tpc.6.12.1859 pmid: 7866029
[31] Hay A, Tsiantis M . The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet, 2006,38:942-947.
doi: 10.1038/ng1835 pmid: 16823378
[32] Shani E, Burko Y, Ben-Yaakov L, Berger Y, Amsellem Z, Goldshmidt A, Sharon E, Ori N . Stage-specific regulation of Solanum lycopersicum leaf maturation by class 1 KNOTTED1- LIKE HOMEOBOX proteins. Plant Cell, 2009,21:3078-3092.
doi: 10.1105/tpc.109.068148 pmid: 19820191
[33] Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E . The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell, 1996,84:735-744.
doi: 10.1016/s0092-8674(00)81051-x pmid: 8625411
[34] Byrne M E, Barley R, Curtis M, Arroyo J M, Dunham M, Hudson A, Martienssen R A . Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature, 2000,408:967-971.
doi: 10.1038/35050091 pmid: 11140682
[35] Waites R, Selvadurai H R N, Oliver I R, Hudson A . The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell, 1998,93:779-789.
doi: 10.1016/s0092-8674(00)81439-7 pmid: 9630222
[36] Kim M, Pham T, Hamidi A, McCormick S, Kuzoff R K, Sinha N . Reduced leaf complexity in tomato wiry mutants suggests a role for PHAN and KNOX genes in generating compound leaves. Development, 2003,130:4405-4415.
doi: 10.1242/dev.00655 pmid: 12900456
[37] Taylor S, Hofer J, Murfet I . Stamina pistilloida, the pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves. Plant Cell, 2001,13:31-46.
doi: 10.1105/tpc.13.1.31 pmid: 11158527
[38] Dong Z C, Zhao Z, Liu C W, Luo J H, Yang J, Huang W H, Hu X H, Wang T L, Luo D . Floral patterning in Lotus japonicus. Plant Physiol, 2005,137:1272-1282.
doi: 10.1104/pp.104.054288 pmid: 15824286
[39] Jiang F K, Guo M, Yang F, Duncan K, Jackson D, Rafalski A, Wang S C, Li B L . Mutations in an AP2 transcription factor- like gene affect internode length and leaf shape in maize. PLoS One, 2012,7:e37040.
doi: 10.1371/journal.pone.0037040 pmid: 22649507
[40] Soll M D, Ibba T M . Aminoacyl-tRNA synthesis. Annu Rev Biochem, 2000,69:617-650.
doi: 10.1146/annurev.biochem.69.1.617 pmid: 10966471
[41] Fatscher T, Boehm V, Gehring N H . Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci, 2015,72:4523-4544.
doi: 10.1007/s00018-015-2017-9 pmid: 26283621
[42] 柴宝峰, 王美, 石文鑫, 柴杨丽, 吕佳 . 无义mRNA降解途径的机制与进化. 山西大学学报(自然科学版), 2017,40:639-644.
Chai B F, Wang M, Shi W X, Chai Y L, Lyu J . Mechanism and evolution of nonsense-mediated mRNA decay. J Shanxi Univ (Nat Sci Edn), 2017,40:639-644 (in Chinese with English abstract).
[43] 贾晓波, 胡剑 . 无义介导的mRNA降解. 中国生物化学与分子生物学报, 2012,28(2):22-27.
Jia X B, Hu J . Nonsense-mediated mRNA decay. Chin J Biochem Mol Biol, 2012,28(2):22-27 (in Chinese with English abstract).
[44] Yamashita A . Role of SMG-1-mediated Upf1 phosphorylation in mammalian nonsense-mediated mRNA decay. Genes Cells, 2013,18:161-175.
doi: 10.1111/gtc.12033
[45] Bhattacharya A, Köhrer C, Mandal D, Rajbhandary U L . Nonsense suppression in archaea. Proc Natl Acad Sci USA, 2015,112:6015-6020.
doi: 10.1073/pnas.1501558112 pmid: 25918386
[46] 肖朝文, 陈福禄, 傅永福 . AT-hook基因AHL27过量表达延迟拟南芥开花. 中国农业科技导报, 2009,11(4):93-98.
Xiao C W, Chen F L, Fu Y F . Over-expression of AT-hook gene AHL27 can delay the flowering of Arabidopsis. J Agric Sci Technol, 2009,11(4):93-98 (in Chinese with English abstract).
[47] Getzenberg R H, Pienta K J, Ward W S, Coffey D S . Nuclear structure and the three-dimensional organization of DNA. J Cell Biochem, 1991,47:289-299.
doi: 10.1002/jcb.240470402 pmid: 1795013
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!