欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (4): 590-595.doi: 10.3724/SP.J.1006.2010.00590

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆苗期耐淹性的遗传与QTL分析

孙慧敏,赵团结*,盖钧镒*   

  1. 南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095
  • 收稿日期:2009-11-23 修回日期:2010-02-08 出版日期:2010-04-12 网络出版日期:2010-03-03
  • 通讯作者: 赵团结,盖钧镒,Tel:025-84395405;E-mail:sri@njau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101708, 2009CB118404, 2010CB125906), 国家高科技发展计划(863计划)项目(2006AA100104), 国家自然科学基金资助项目(32671314, 32671266)和教育部高等学校创新引智计划项目(B08025)。

Inheritance and QTL Mapping of Waterlogging Tolerance at Seedling Stage of Soybean

SUN Hui-Min,ZHAO Tuan-Jie*,GAI Jun-Yi*   

  1. Soybean Research Institute / Nanjing Agricultural University / National Center for Soybean Improvement / National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
  • Received:2009-11-23 Revised:2010-02-08 Published:2010-04-12 Published online:2010-03-03
  • Contact: ZHAO Tuan-Jie,GAI Jun-Yi,Tel:025-84395405;E-mail:sri@njau.edu.cn

摘要:

洪涝灾害是大豆生产的主要逆境之一,培育耐涝品种是抗灾保收的重要措施。大豆耐涝性育种方案的设计必须以耐涝性遗传为前提。以苏88-M21(淹水不敏感)×新沂小黑豆(淹水敏感)衍生的175个重组自交系(NJRISX)为材料,在盆栽V2期土壤表层保持5~7 cm水层20 d的淹水条件下,研究大豆苗期耐淹性的遗传和QTL定位。通过对8个耐淹性有关性状的相关分析和主成份分析,确定以处理前后株高变化量、处理终叶龄和成熟期株高3个性状的平均耐淹指数为评价指标。NJRISX家系间耐淹性差异极显著,存在超亲分离。主基因+多基因分离分析表明该群体的耐淹性为2对连锁主基因+多基因遗传,主基因遗传率为62.83%,多基因的遗传率为8.90%。WinQTLCart2.5复合区间及多区间QTL定位分析均检测到2个QTL,位于连锁群L2上的satt229~satt527和satt527~satt286区间,对表型的解释率分别为11.76%~25.20%和10.10%~12.34%。大豆NJRISX群体苗期耐淹性遗传分离分析与QTL定位结果相对一致。

关键词: 大豆, 耐淹性, RIL群体, 分离分析, QTL定位

Abstract:

Flooding is a serious problem for soybean production in eastern and southern China. Development of cultivars with tolerance to waterlogging is one of the effective ways to cope with the stress problem. For which, the genetic knowledge of waterlogging tolerance is of essential importance. The present study was aimed at revealing the inheritance and mapping the QTLs for waterlogging tolerance of soybean at seedling stage. The materials used were 175 recombinant inbred lines (RILs) derived from the cross Su88-M21 (Tolerant) × Xinyixiaoheidou (Highly sensitive), designated as NJRISX. A pot experiment was held under 5–7 cm waterlogging stress for 20 days at V2 stage. Based on the correlation and principal component analysis of eight traits, we calculated the joint waterlogging tolerance index from the average of individual tolerance index of plant height increment, number of leaves at the end of waterlogging and plant height at maturity to evaluate the tolerances of the materials. There existed obvious transgressive segregation and significant differences among the RIL lines. The segregation analysis under major gene plus polygene mixed inheritance model showed that waterlogging tolerance of soybean was controlled by two linked major genes plus polygenes with major gene heritability of 62.83% and polygene heritability of 8.90%. By using composite interval mapping (CIM) and multiple interval mapping (MIM) of WinQTL Cartographer Version 2.5, two QTLs conferring waterlogging tolerance were mapped in the marker regions of Satt229–Satt527 and Satt527–satt286 on linkage groups L2, explaining 11.76% and 12.34% of the total phenotypic variation, respectively. Accordingly, the results from segregation analysis and QTL mapping are relatively consistent in NJRISX population.

Key words: Soybean, Waterlogging tolerance, Recombinant inbred line(RIL), Segregation analysis, QTL mapping

[1] Reyna N, Cornelious B, Shamnon J G, Sneller C H. Evaluation of a QTL for waterlogging tolerance in southern soybean germplasm. Crop Sci, 2003, 43: 2077–2082

[2] Cornelious B, Chen P, Chen Y, Leon N de, Shannon J G, Wang D. Identification of QTLs underlying water-logging tolerance in soybean. Mol Breed, 2005, 16: 103–112

[3]  Wang F(王芳), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Evaluation, eco-region characterization and elite germplasm identification of submergence tolerance at seeding stage in wild and cultivated soybeans. Soybean Sci (大豆科学), 2007, 26(6): 828–834 (in Chinese with English abstract)

[4] Githiri S M, Watanabe S, Harada K, Takahashi R. QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed, 2006, 125: 613–618

[5] Li L(李林), Zou D-S(邹冬生), Liu D-W(刘登望), Liu F(刘飞), Zhang W-H(张武汉), Sun Y-T(孙玉桃), Yang G-L(杨光立). Research progress on waterlogging in peanut and other crops. Chin J Oil Crop Sci (中国油料作物学报), 2004, 26(3): 105–110 (in Chinese with English abstract)

[6] Boru G, Ginkel M V, Kronstad W E, Boersma L. Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica, 2001, 117: 91–98

[7] Setter T L, Ellis M, Lourance E V, Ella E S, Senadhira S B M, Sarkarung S, Datta S. Physiology and genetics of submergence tolerance of rice. Ann Bot, 1997, 79(suppl): 61–71

[8]   VanToai T T, Martin S S K, Chase K, Boru G, Schnipke V, Schmitthenner A F, Lark K G. Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci, 2001, 41: 1247–1252

[9]         Wang F(王芳), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Inheritance and QTL analysis of submergence tolerance at seedling stage in soybean

[Glycine max (L.) Merr.]. Acta Agron Sin (作物学报), 2008, 34(5): 748–753 (in Chinese with English abstract)

[10] Gai J-Y(盖钧镒). Methods of Experimental Statistics (试验统计方法). Beijing: China Agriculture Press, 2000 (in Chinese)

[11] Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). Genetic System of Quantitative Traits in Plants (植物数量性状遗传体系). Beijing: Science Press, 2003 (in Chinese)

[12] Zhang H-M(张红梅), Zhou B(周斌), Zhao T-J(赵团结), Xing H(邢邯), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). QTL mapping of tofu and soymilk output in RIL population NJRISX of soybean. Acta Agron Sin (作物学报), 2008, 34(1): 67–75 (in Chinese with English abstract)

[13] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer Version 2.5, Department of Statistics, North Carolina State University, Raleigh, NC, 2001–2006

[14] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963–971
Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character. Genetics, 1996, 142: 285–294
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!