欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 127-137.doi: 10.3724/SP.J.1006.2011.00127

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮量对不同株型小麦品种叶型垂直分布特征的影响

李国强,汤亮,张文宇,曹卫星,朱艳*   

  1. 南京农业大学 / 江苏省信息农业高技术研究重点实验室,江苏南京 210095
  • 收稿日期:2010-02-18 修回日期:2010-08-04 出版日期:2011-01-12 网络出版日期:2010-11-16
  • 通讯作者: 朱艳,E-mail:yanzhu@njau.edu.cn,Tel:025-84396565
  • 基金资助:

    本研究由教育部新世纪优秀人才支持计划项目(NCET-08-0797), 国家自然科学基金项目(30871448)和江苏省自然科学基金项目(BK2008330)资助。

Effect of Nitrogen Rate on Vertical Distribution Characteristics of Leaf-Type in Wheat with Different Plant Types

LI Guo-Qiang,TANG Liang,ZHANG Wen-Yu,CAO Wei-Xing,ZHU Yan*   

  1. Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2010-02-18 Revised:2010-08-04 Published:2011-01-12 Published online:2010-11-16
  • Contact: ZHU Yan,E-mail:yanzhu@njau.edu.cn,Tel:025-84396565

摘要: 在大田生产条件下,以紧凑型高秆品种宁麦9号和矮秆品种矮抗58、中间型品种扬麦12、松散型品种淮麦17为材料,测定并分析了3个施氮水平下不同生育时期的小麦冠层叶型特征,以及开花期小麦叶长和叶宽、单叶面积、茎叶夹角、分层叶面积指数和群体透光率的垂直分布特征。结果表明,小麦叶型特征存在显著的基因型差异,而施氮量的调控作用因叶型性状和生育时期不同而各异。叶片定形后,从植株基部向上,4个小麦品种不同叶位叶片单叶面积呈“升-降-升-降”的变化趋势,而茎叶夹角呈递减趋势。其最大分层叶面积指数所在的相对冠层高度为0.60。从冠层基部向上,群体透光率逐渐增加,符合二次多项式曲线。施氮提高了单叶面积,其中扬麦12和淮麦17的增加幅度较大。施氮提高了各叶位茎叶夹角,且对宁麦9号、淮麦17和扬麦12冠层下部茎叶夹角的调控作用大于冠层上部,而对矮抗58正好相反。施氮提高了各株型小麦品种的分层叶面积指数,降低了群体透光率,但过量施氮条件下,宁麦9号和矮抗58透光率的下降幅度小于扬麦12和淮麦17。各株型小麦品种群体透光率随累积叶面积指数的增加而递减。籽粒产量为N150 (150 kg hm-2) > N225 (225 kg hm-2) > N75 (75 kg hm-2)。施氮显著提高了小麦品种穗数和收获指数,但对千粒重的影响不显著。穗粒数以高氮处理最高,低氮处理其次。籽粒产量、千粒重、穗数、穗粒数和收获指数在4个株型品种间差异显著,籽粒产量为矮抗58 > 宁麦9号 > 扬麦12 > 淮麦17,穗数和穗粒数是造成籽粒产量差异的主要原因。

关键词: 小麦, 施氮, 株型, 叶型, 垂直分布

Abstract: The objective of this study was to elucidate the vertical distribution characteristics of leaf using wheat (Triticum aestivum L.) cultivars in compact-high, compact-short, intermediate, and loose plant types with three nitrogen rates in two growing seasons. The leaf-type characteristics at the stages of stem elongation, flowering and grain-filling, and the vertical distribution characteristics of leaf and light within canopy at flowering were measured. Significant differences were observed among genotypes for leaf-type characteristics, and the regulating effects of nitrogen rate varied with leaf-type traits and growth stages. Single leaf area changed in a double-peak curve from canopy base to top. A gradually decreasing tendency with increasing canopy height was found in angle between stem and leaf (ABSL). The maximum leaf area index was located at 0.60 relative canopy height. Light transmission rate increased from the base to top of canopy, and presented a good fitness to quadratic polynomial curve. Single leaf area increased with increasing nitrogen rate, with greater increments in Yangmai 12 and Huaimai 17 than in Ningmai 9 and Aikang 58. The ABSL enhanced with the increasing nitrogen rate. The nitrogen regulation effects on ABSL of Ningmai 9, Huaimai 17, and Yangmai 12 were stronger at canopy base than at canopy top, but Aikang 58 showed a reverse pattern. With the increase of nitrogen rate, leaf area index accumulation at different relative canopy heights increased, while light transmission decreased. The smaller decline of light transmission in Ningmai 9 and Aikang 58 was observed than those in Yangmai 12 and Huaimai 17 when more nitrogen was applicated. The transmittance rate decreased in an exponential pattern with increasing leaf area index accumulation. The grain yield ranked in the order of treatments supplied 150 (N150), 225 (N225) and 75 (N75) kg ha-1. Nitrogen fertilization increased remarkably spike number and harvest index, excluding 1000-grain weight. The grain number per spike was the highest in the N225 treatment, follwded by the N75 treatment. Four wheat cultivars with different plant types differed markedly in grain yield, spike number, grain number per spike, and harvest index. The grain yields were ranked as Aikang 58 > Ningmai 9 > Yangmai 12 > Huaimai 17. These results may provide a technical basis for optimizing nitrogen application to wheat cultivars with different plant types.

Key words: Wheat, Nitrogen rate, Plant type, Leaf characteristics, Vertical distribution

[1]Ren S-J(任书杰), Li S-Q(李世清), Wang Q-J(王全九), Li S-X(李生秀). Effects of cultivation mode, nitrogen fertilization, and cultivar on winter wheat canopy parameters and grain yields in sub-humid area. Chin J Ecol (生态学杂志), 2006, 25(12): 1449–1454 (in Chinese with English abstract)
[2]Monneveux P, Reynolds M P, Gonzáez-Santoyo H, Peña R J, Mayr L, Zapata F. Relationships between grain yield, flag leaf morphology, carbon isotope discrimination and ash content in irrigated wheat. J Agron Crop Sci, 2004, 190: 395–401
[3]Kang X-B(康祥波), Zhong Y-H(钟阳和), Zhang L(张理), Mei N(梅楠). The study of the canopy architecture of winter wheat stand. J Henan Vocation-Tech Teachers Coll (河南职业技术师范学院学报), 1990, 18(3): 13–25 (in Chinese with English abstract)
[4]Araus J L, Reynolds M P, Acevedo E. Leaf posture, grain yield, growth, leaf structure, and carbon isotope discrimination in wheat. Crop Sci, 1993, 33: 1273–1279
[5]Reynolds M P, Delgado B M I, Gutierez-Rodriguez M, Larque-Saavedra A. Photosynthesis of wheat in a warm, irrigated environment: I. Genetic diversity and crop productivity. Field Crops Res, 2000, 66: 37–50
[6]Wu W-M(伍维模), Li S-Q(李世清), Wang Y-J(王瑞军), Shao M-A(邵明安). Effects of genotype and nitrogen fertilizer on winter wheat photosynthetic parameters and leaf morphogenesis during later growth. Chin J Eco-Agric (中国生态农业学报), 2006, 14(4): 76–81 (in Chinese with English abstract)
[7]Blake N K, Lanning S P, Martin J M, Sherman J D, Talbert L E. Relationship of flag leaf characteristics to economically important traits in two spring wheat crosses. Crop Sci, 2007, 47: 491–494
[8]Ishag H M, Mohamed B A, Ishag K H M. Leaf development of spring wheat cultivars in an irrigated heat-stressed environment. Field Crops Res, 1998, 58: 167–175
[9]Yang W-X(杨文雄). Relationship between plant type indices and yield formation in spring wheat on drylang. Agric Res Arid Areas (干旱地区农业研究), 2006, 24(1): 43–46 (in Chinese with English abstract)
[10]Singh P M, Zhang G-P(张国平), Chen J-X(陈锦新). Influence of genotypes and nitrogen fertilization on leaf morphogenesis and tillering behaviors in winter wheat. J Triticeae Crops (麦类作物学报), 2000, 20(1): 28–23 (in English with Chinese abstract)
[11]Li Z-Y(李志勇), Guo Y-X(郭永新), Wang P(王璞), Cui Z-X(翟志席), Zilkens M B. A comparative study of canopy structures of winter wheat under different models of irrigation and N fertilization. J Triticeae Crops (麦类作物学报), 2007, 27(6): 1085–1088 (in Chinese with English abstract)
[12]Wang F-H(王法宏), Yang H-B(杨洪宾), Xu C-Z(徐成忠), Li S-D(李升东), Si J-S(司纪升). Effect of rasied bed planting on plant morphological characters and grain yield of winter yield. Acta Agron Sin (作物学报), 2007, 33(6): 1038–1040 (in Chinese with English abstract)
[13]Vos J, Putten P E L v d, Birch C J. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field Crops Res, 2005, 93: 64–73
[14]Latiri-Souki K, Nortcliff S, Lawlor D W. Nitrogen fertilizer can increase dry matter, grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions. Eur J Agron, 1998, 9: 21–34
[15]Zhao L(赵琳), Ji C-R(吉春容), Li S-Q(李世清), Li S-X(李生秀). Effect of nitrogen and planting modes on the colony characteristic of winter wheat in sub-humid farmland ecosystem. J Northwest Sci-Tech Univ Agric For (Nat Sci Edn) (西北农林科技大学学报·自然科学版), 2007, 35(12): 143–148 (in Chinese with English abstract)
[16]Zhang Y-M(张艳敏), Li J-S(李晋生), Qian W-P(钱维朴), Huang D-M(黄德明). Canopy structure and light distribution in winter wheat. Acta Agric Boreali-Sin (华北农学报), 1996, 11(1): 54–58 (in Chinese with English abstract)
[17]Li C-M(李春明), Xiong S-P(熊淑萍), Zhao Q-M(赵巧梅), Yang Y-Y(杨颖颖), Ma X-M(马新明). Effects of organic manure and urea mixture on canomy architecture, grain yield and protein content of wheat. Sci Agric Sin (中国农业科学), 2008, 41(12): 4287–4293 (in Chinese with English abstract)
[18]Yang W-P(杨文平), Guo T-C(郭天财), Liu S-B(刘胜波), Wang C-Y(王晨阳), Wang Y-H(王永华), Ma D-Y(马冬云). Effects of row spacing in winter wheat on canopy structure and microclimate in later growth stage. J Plant Ecol (植物生态学报), 2008, 32(2): 485–490 (in Chinese with English abstract)
[19]Hu Y-J(胡延吉), Lan J-H(兰进好), Zhao T-F(赵坦方), Gao F-Z(高法振). Canopy architecture and hotosynthetic characteristics in two winter wheat cultivars with different spike type. Acta Agron Sin (作物学报), 2000, 26(6): 905–912 (in Chinese with English abstract )
[20]Du Y(杜永), Wang Y(王艳), Wang X-H(王学红), Liu H(刘辉), Yang C(杨成), Yang J-C(杨建昌). Plant-type characteritics of super-high-yield wheat in rice-wheat cropping system. J Triticeae Crops (麦类作物学报), 2008, 28(6): 1075–1079 (in Chinese with English abstract)
[21]Zhang Q-L(张其鲁). Studies on morphologic characteristics of Weimai 8 and the ideotype of wheat. MS Dissertation of China Agricultural University, 2004 (in Chinese with English abstract)
[22]Schabenberger O, Pierce F J. Contemporary statistical models for the plant and soil sciences. Boca Raton: Taylor & Francis/CRC Press, 2001
[23]Chen Y-H(陈雨海), Yu S-L(余松烈), Yu Z-W(于振文). Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agron Sin (作物学报), 2003, 29(5): 730–734 (in Chinese with English abstract)
[24]Zhang L-M(张雷明), Yang J-L(杨君林), Shang-Guan Z-P(上官周平). Effects of nitrogen nutrition on the physiological characteristics of wheat colony in dryland. Chin J Ecol-Agric (中国生态农业学报), 2003, 11(3): 63–65 (in Chinese with English abstract)
[25]Boedhram N, Arkebauer T J, Batchelor W D. Season-long characterization of vertical distribution of leaf area in Corn. Agron J, 2001, 93: 1235-1242
[26]Subedi K D, Ma B L. Ear position, leaf area, and contribution of individual leaves to grain yield in conventional and leafy maize hybrids. Crop Sci, 2005, 45: 2246–2257
[27]Feng C-N(封超年), Guo W-S(郭文善), He J-H(何建华), Zhu X-K(朱新开), Ma G-H(马光辉). The characteristics of plant type of high yield in wheat. J Yangzhou Univ (Nat Sci Edn) (扬州大学学报·自然科学版), 1998, 1(4): 24–30 (in Chinese with English abstract)
[28]Zeng Z-R(曾浙荣), Zhao S-S(赵双宋), Li Q(李青). Canopy development, light interception and grain yield in high yielding wheat varieties in Beijing district. Acta Agron Sin (作物学报), 1991, 17(3): 161–170 (in Chinese with English abstract)
[29]Hirose T. Development of the Monsi-Saeki theory on canopy structure and function. Ann Bot, 2005, 95: 483–494
[30]Ledent J F. Relationships between grain yield and morphological characters in the winter wheat genotypes of the Belgian national list. Biol Plant, 1979, 21: 161–169
[31]Hansen K A, Martin J M, Lanning S P, Talbert L E. Correlation of genotype performance for agronomic and physiological traits in space-planted versus densely seeded conditions. Crop Sci, 2005, 45: 1023–1028
[32]Araus J L, Reynolds M P, Acevedo E. Leaf posture, grain yield, growth, leaf structure, and carbon isotope discrimination in wheat. Crop Sci, 1993, 33: 1273–1279
[33]Li Z, Paterson A, Pinson S, Stansel J. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica, 1999, 109: 79–84
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[4] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[5] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[15] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!