作物学报 ›› 2011, Vol. 37 ›› Issue (02): 286-293.doi: 10.3724/SP.J.1006.2011.00286
郭惠明, 李召春, 张晗, 信月芝, 程红梅
GUO Hui-Ming,LI Zhao-Chun,ZHANG Han,XIN Yue-Zhi,CHENG Hong-Mei*
摘要: 从中棉12 (Gh12)、中棉36 (Gh36)和海岛棉7124 (Gb7124)品种中克隆并鉴定了棉花的CBF基因,该基因编码一个由184个氨基酸组成的蛋白CBF,该蛋白具有CBF转录因子典型的序列标签“PKRRAGRKKFQETRHP”和“FADSAW”。Southern杂交表明,CBF基因在3个棉花品种中均以基因家族的形式存在。围绕海岛棉7124的CBF基因(GbCBF1)开展的逆境表达谱分析表明,GbCBF1基因受低温、干旱、盐和ABA等多种逆境条件的诱导表达。将GbCBF1基因构建到由强启动子35S和弱启动子NOS这2种启动子控制的植物表达载体pCambia2301上并转化烟草NC89,经过筛选及PCR鉴定,共获得26株转基因烟草。对部分T1代植株进行的PCR和RT-PCR检测表明,GbCBF1基因可以在烟草中正常转录并遗传。分析表明,在低温下,转基因烟草的电解质渗漏率普遍低于野生型烟草,而游离脯氨酸含量和可溶性糖含量均高于野生型烟草,说明转GbCBF1基因提高了烟草的耐寒性。
[1]Bray E A. Plant responses to water deficit. Trends Plant Sci, 1997, 2: 48–54 [2]Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold induced COR gene expression. Plant J, 1998, 16: 433–442 [3]Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701–713 [4]Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33: 751–763 [5]Fan Y-L(樊亚利). Reviewing sixty years’ development of cotton industry in Xinjiang. Finance & Economics of Xinjiang (新疆财经), 2009, (5): 18–23 (in Chinese with English abstract) [6]Artus N N, Uemura M, Steponkus P L, Gilmour S J, Lin C T, Thomashow F. Constitutive expression of the cold regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing to lerance. Proc Natl Acad Sci USA, 1996, 93: 13404–13409 [7]Monroy A F, Castonguay Y, Laberge S, Sarhan F, Vezina L P, Dhindsa R S. A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol, 1993, 120: 873–879 [8]Thomashow M F. Plant cold acclimation: Freezing tolerance genes and regulation mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599 [9]Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94: 1035–1040 [10]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406 [11]Gilmour S J, Fowle S G. Thomashow M F. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol, 2004, 54: 767–781 [12]Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol, 2006, 47: 141–153 [13]Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold responsive gene expression in Zea mays L. Plant Cell Physiol, 2004, 45: 1042–1052 [14]Zhang X, Fowler S G, Cheng H M, Lou Y G, Rhee S Y, Stockinger E J, Thomashow M F. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing tolerant Arabidopsis. Plant J, 2004, 39: 905–919 [15]Xiong Y W, Fei S Z. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta, 2006, 224: 878–888 [16]Wang G-L(王关林), Fang H-J(方宏筠). Plant Genetic Engineering (植物基因工程), 2nd edn. Beijing: Scientific and Technical Publishers, 2002 (in Chinese) [17]Hunag W-K(黄文坤), Cheng H-M(程红梅), Guo J-Y(郭建英), Gao B-D(高必达), Wan F-H(万方浩). Method of RNA extraction from different tissues of invasive alien weed Eupatorium adenophorum. Biotech Bull (生物技术通报), 2007, 2: 147–150 (in Chinese with English abstract) [18]Gong M, Li Y J, Chen S Z. Abscisic acid-induced thermotolerance in maize seedling is mediated by calcium and associated with antioxidant systems. J Plant Physiol, 1998, 153: 488–496 [19]Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water stress studies. Plant Soil, 1973, 39: 205–207 [20]Irigoyen J J, Emerich D W, Sánchez-Díaz M. Water stress induced changes in concentrations of praline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant, 1992, 84: 55–60 [21]Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homoloys in drought and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859–1868 [22]Guy C L. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1990, 41: 187–223 [23]Delauney A J. Verma D P S. Proline biosynthesis and osmo regulation in plants. Plant J, 1993, 4: 215–223 [24]Gilmour S, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124: 1854–1865 [25]Cholewa E, Cholewinski A J, Shelp B J, Snedden W A, Bown A W. Cold shock stimulated Caminobutyric acid synthesis ismediated by an increase incytosolic Ca2+, not by an increase in cytosolic H+. Can J Bot, 1997, 75: 375–382 [26]Wanner L A, Junttila O. Cold induced freezing tolerance in Arabidopsis. Plant Physiol, 1999, 120: 391–400 |
[1] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[4] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[5] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[6] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[7] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[8] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[9] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[10] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[11] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[12] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[13] | 葛敏, 王元琮, 宁丽华, 胡梦梅, 石习, 赵涵. 氮响应转录因子ZmNLP5影响玉米根系生长的功能研究[J]. 作物学报, 2021, 47(5): 807-813. |
[14] | 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826. |
[15] | 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671. |
|