欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (03): 443-451.doi: 10.3724/SP.J.1006.2011.00443

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆微核心种质在黄淮地区的区域适应性分析

刘章雄1,杨春燕2,徐冉3,卢为国4,乔勇1,张礼凤3,常汝镇1,邱丽娟1,*   

  1. 1中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程 / 农业部作物种质资源利用重点开放实验室,北京 100081;2 河北省农林科学院粮油作物研究所,河北石家庄 050031;3山东省农科院作物研究所,山东济南 250010;4 河南省农科院经济作物研究所,河南郑州 450002
  • 收稿日期:2010-06-28 修回日期:2010-09-27 出版日期:2011-03-12 网络出版日期:2010-12-15
  • 通讯作者: 邱丽娟, E-mail: qiu_lijuan@263.net, Tel: 010-82106826
  • 基金资助:

    本研究由农业部保种项目“大豆种质资源精准鉴定和展示”[NB08-2130315-(25-31)-06, NB07-2130315-(25-30)-06, NB06-07040(22-27)-05]和国家重点基础研究发展计划(973计划)(2004CB117203)项目资助。

Analysis of Adaptability of Soybean Mini Core Collections in Huang-Huai Region

LIU Zhang-Xiong1,YANG Chun-Yan2,XU Ran3,LU Wei-Guo4,QIAO Yong1,ZHANG Li-Feng3,CHANG Ru-Zhen1,QIU Li-Juan1   

  1. 1 National Key Facility for Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China; 2 Institute of Grain and Oil Crops Research, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, China; 3 Institute of Crop Sciences, Shandong Academy of Agricultural Sciences, Jinan 250010, China; 4 Institute of industrial Crops Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
  • Received:2010-06-28 Revised:2010-09-27 Published:2011-03-12 Published online:2010-12-15
  • Contact: 邱丽娟, E-mail: qiu_lijuan@263.net, Tel: 010-82106826

摘要: 运用主效可加互作可乘(AMMI)模型,对黄淮地区3省两年的60份大豆微核心种质数据进行了分析,目的是对参试种质的环境稳定性和适应性进行评价。结果表明,(1)株高、有效分枝数、百粒重和产量性状的基因型与环境互作效应(G×E)占总平方和的16.73%~24.57%,均达到极显著水平,说明有进一步进行稳定性分析的必要。(2)不同种质不同性状在各试验点具有不同的适应性,部分种质某一性状具有广泛适应性、而部分种质只在某一特定环境才能表现其潜力。本研究结果将为黄淮地区微核心种质在育种实践中的有效利用提供理论依据。

关键词: 大豆, 微核心种质, AMMI, 双标图, 区域适应性

Abstract: Accurate identification and evaluation of germplasm can enhance its effective use. To evaluate germplasm’s environmental adaptability and stability, we applied the additive main effects and multiplicative interaction (AMMI) model to analyze the two years’ data of the 60 mini core collections of soybean in three provinces in the Huang-Huai region. The results showed that the interactions between the genotypes and environment (G×E) for plant height, effective branch number, 100-seed weight, and yield per unit area were highly significant (P<0.01), and the squares of G×E to total squares were 16.73%–24.57%, suggesting a need of further analysis for the stability of varieties.  The phenotypes of different varieties were dependent on the planting sites, and some germplasm performed wide adaptability while others not in particular environment. The results laid a theoretical foundation to effectively use mini core collection for breeding in Huang-Huai region.

Key words: Soybean, Mini Core Collection, AMMI, Biplot, Regional adaptability

[1]Qiu L-J(邱丽娟), Li Y-H(李英慧), Guan R-X(关荣霞), Liu Z-X(刘章雄), Wang L-X(王丽霞), Chang R-Z(常汝镇). Establishment, representative testing and research progress of soybean core collection and mini core collection. Acta Agron Sin (作物学报), 2009, 35(4): 571–579 (in Chinese with English abstract)
[2]Luan W-J(栾维江), Liu Z-X(刘章雄), Guan R-X(关荣霞), Chang R-Z(常汝镇), He B-R(何蓓如), Qiu L-J(邱丽娟). Representative and genetic diversity at SSR loci for northeast spring sowing soybeans. Chin J Appl Ecol (应用生态学报), 2005, 16(8): 1469–1476(in Chinese with English abstract)
[3]Wang L X, Lin F Y, Luan W J, Li W, Guan R X, Li Y H, Ma Y S, Liu Z X, Chang R Z, Qiu L J. Genetic diversity of Chinese spring soybean germplasm revealed by SSR markers. Plant Breed, 2008, 127: 56–61
[4]Lin F-Y(林凡云), Qiu L-J(邱丽娟), Chang R-Z(常汝镇), He B-R(何蓓如). Genetic diversity of landrace and bred varieties of soybean in Shaanxi Chinese. J Oil Crop Sci (中国油料作物学报), 2003, 25(3): 24–29(in Chinese with English abstract)
[5]Xie H, Guan R X, Chang R Z, Qiu L J. Genetic diversity of the summer soybean germplasm in China revealed by SSR markers. Chin Sci Bull (科学通报), 2005, 50: 526–536(in Chinese)
[6]Guan Y(关媛), E W-D(鄂文弟), Wang L-X(王丽侠), Guan R-X(关荣霞), Liu Z-X(刘章雄), Chang R-Z(常汝镇), Qu Y-Y(曲延英), Qiu L-J(邱丽娟). Analysis of factors influencing the genetic diversity evaluation using two soybean
[Glycine max L. Merr.] collections from Hunan and Hubei. Acta Agron Sin (作物学报), 2007, 33(3): 461–468(in Chinese with English abstract)
[7]Wang L X, Guan Y, Guan R X, Li Y H, Ma Y S, Dong Z M, Liu X, Zhang H Y, Zhang Y Q, Liu Z X, Chang R Z, Xu H M, Li L H, Lin F Y, Luan W J, Ya N Z, Ning X C, Zhu L, Cui Y H, Piao R H, Liu Y, Chen P Y, Qiu L J. Establishment of Chinese soybean (Glycine max) core collections with agronomic traits and SSR markers. Euphytica, 2006, 151: 215–223
[8]Frankel O H, Brown A H D. Current plant genetic resources a critical appraisal. In: Genetics: New Fronetiers (Vol. IV). New Delhi, 1984. pp 112–145
[9]Kempton R A. The use of biplots in interpreting variety by environment interactions. J Agric Sci Camb, 1984, 103: 123–135
[10]Zobel R W, Wright M J, Gauch H G. Statistical analysis of a yield trial. Agron J, 1988, 80: 388–393
[11]Gauch Jr H G. Model selection and validation for yield trials with interaction. Biometrics, 1998, 44: 705–715
[12]Zhang Z(张泽), Lu C(鲁成), Xiang Z-H(向仲怀). Analysis of variety stability based on AMMI model. Acta Agron Sin (作物学报), 1998, 24(3): 304–309 (in Chinese with English abstract)
[13]Zeng X-Y(曾献英). Application of AMMI model to analyze regional trial data of cotton. Cotton Sci (棉花学报), 2004, 16(4): 233–235 (in Chinese with English abstract)
[14]Liu J-H(刘俊恒), Hu N(胡宁), Liu X-P(刘小片), He D-Y(何代元), Ma Z-J(马兆锦), He Q(何琴). Study of AMMI model in data analysis of regional trial of maize. Rain Fed Crops (杂粮作物), 2009, 29 (3): 159–162 (in Chinese with English abstract)
[15]An Y-W(安颖蔚), Gao X-N(高西宁), Ge W-D(葛维德). Application of AMMI model in the analysis of spring wheat regional trial date. J Anhui Agric Sci (安徽农业科学), 2006, 34 (17): 4199–4200 (in Chinese with English abstract)
[16]Qiang A-L(强爱玲), An Y-P(安永平). Application of AMMI model to analyze regional trial data of rice. J Jilin Agric Sci (吉林农业科学), 2007, 32(1): 5–7, 11(in Chinese with English abstract)
[17]Zhang Y(张艳), He Z-H(何中虎), Wang L(王磊), Zhou G-Y(周桂英). Using additive main effects and multiplicative interaction model to analyze genotype and environment effects on protein content of winter wheat in China. Acta Agric Boreali-Sin (华北农学报), 2000, 15(suppl): 31–35 (in Chinese with English abstract)
[18]Liu W-J(刘文江), Li H-J (李浩杰), Wang X-D(汪旭东), Zhou K-D(周开达). Stability analysis for elementary traits of hybrid rice by AMMI model. Acta Agron Sin (作物学报), 2002, 28(4): 569–573 (in Chinese with English abstract)
[19]Guo T-C(郭天财), Ma D-Y(马冬云), Zhu Y-J(朱云集), Wang C-Y(王晨阳), Xia G-J(夏国军), Luo Y(罗毅). Genotype, environment and their interactive effects on main quality traits of Winter-Sown wheat variety. Sci Agric Sin (中国农业科学), 2004, 37(7): 948-953 (in Chinese with English abstract)
[20]Zheng W(郑伟), Liu Y-H(刘玉红), Wang Y-X(王永样), Yu Y(于勇), Wang S-B(王思斌), Liu G-M(刘国民). The application of biplot in yield analysis of soybean regional test. Heilongjiang Agric Sci (黑龙江农业科学), 2005, (6): 5–7 (in Chinese with English abstract)
[21]Chen Z-X(陈志雄), Hu R-F(胡润芳), Lin G-Q(林国强). AMMI model analysis on regional test for new vegetable soybean varieties. Soybean Bull (大豆通报), 2007, (1): 32–33 (in Chinese with English abstract)
[22]Zheng W(郑伟). Analysis on regional test of soybean variety by AMMI model. Heilongjiang Agric Sci (黑龙江农业科学), 2005, (2): 15–17 (in Chinese with English abstract)
[23]Sneller C H, Dombek D. Comparing soybean cultivar ranking and selection for yield with AMMI and full-data performance estimates. Crop Sci, 35: 1536–1541
[24]Sabaghnia N, Sabaghpour S H, Dehghani H. The use of an AMMI model and its parameters to analysis yield stability in multi-environment trials. J Agric Sci, 2008, 146: 571–581
[25]Aremu C O, Adebayo T A, Oyekunle M, Ariyo O J. The relative discriminatory abilities of techniques measuring genotype×environment interaction in soybean (Glycine max L Merr.) in semi-arid and rain forest environments of Nigeria. Agric J, 2007, 2: 210–215
[26]Asfaw A, Alemayehu F, Gurum F, Atnal M. AMMI and SREG GGE biplot analysis for matching varieties onto soybean production environments in Ethiopia. Sci Res Essay, 2009, 4: 1322–1330
[27]Gurmu F, Mohammed H, Alemaw G. Genotype×environment interactions and stability of soybean for grain yield and nutrition quality. African Crop Sci J, 2009, 17: 87–99
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!