欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (05): 784-792.doi: 10.3724/SP.J.1006.2011.00784

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用极端材料定位水稻粒形性状数量基因位点

张强1,2,姚国新1,3,胡广隆1,汤波1,陈超1,李自超1,*   

  1. 1中国农业大学农业部作物基因组学与遗传改良重点实验室 / 北京市作物遗传改良重点实验室,北京100193;2吉林省农业科学院水稻研究所, 吉林公主岭136100;3孝感学院生命科学学院,湖北孝感432100
  • 收稿日期:2010-10-19 修回日期:2011-01-06 出版日期:2011-05-12 网络出版日期:2011-03-24
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2010CB129504),国家科技支撑计划项目(2009BADA2B01, 2006BAD13B01)和国家高技术研究发展计划(863计划)项目(2006AA10Z158, 2006AA100101)资助。

Identification of QTLs for Grain Traits in Rice Using Extreme Materials in Grain Size

ZHANG Qiang1,2,YAO Guo-Xin1,3,HU Guang-Long1,TANG Bo1,CHEN Chao1,LI Zi-Chao1,*   

  1. 1 Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; 2 Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China; 3 School of Life Science and Technology, Xiaogan University, Xiaogan 432100, China
  • Received:2010-10-19 Revised:2011-01-06 Published:2011-05-12 Published online:2011-03-24

摘要: 利用极端大粒材料GSL156(千粒重71.9 g)与特小粒材料川七(千粒重12.1 g,轮回亲本)杂交、回交获得的BC2F2 216个个体为作图群体,在北京进行稻谷粒长、粒宽、粒厚、长宽比、千粒重等粒形性状的鉴定。采用单标记分析和复合区间作图法,利用SSR标记对粒形性状进行数量性状基因座检测。结果表明,上述粒形性状在BC2F2群体均呈正态连续分布,表现为由多基因控制的数量性状;共检测到与粒形性状相关的QTL 28个,分布于第1、2、3、4、5、6和12染色体上。其中qGL3-2qGL3-3qGT12-1qGT2-1qGT5-1qGW1-1qGW12-1qGW2-1qGW5-1qRLW3-1qTGW12-1qTGW2-1qTGW3-3qTGW5-1对表型变异的贡献率分别为13.70%、52.51%、21.13%、18.79%、20.92%、14.59%、18.33%、30.03%、20.05%、24.53%、13.47%、11.43%、21.30%和15.68%,为主效QTL。其中,第3染色体上检测出来的QTL最多。在所有检测到的28个QTL中,6个QTL的增效等位基因来源于小粒亲本川七,而其余QTL的增效等位基因均来源于大粒亲本GSL156,基因作用方式主要表现为加性或部分显性。第3染色体RM7580~RM8208区间是分别与粒宽、长宽比和千粒重相关的3个主效QTL的共同标记区间,第2染色体的RM7636~RM5812区间、第5染色体的RM3351~RM26区间和第12号染色体的RM1103~RM17区间是分别与粒宽、粒厚和千粒重相关的3个主效QTL的共同标记区间,这些区间对粒形贡献率较大,为进一步精细定位或克隆这些新的粒重或粒形QTL奠定了基础。同时大粒亲本对稻谷粒长、粒宽、粒厚和千粒重等性状的增效作用显著。

关键词: 水稻, 粒形性状, 微卫星标记, 数量性状基因座

Abstract: The grain length (GL), grain width (GW), grain thickness (GT), ratio of grain length to width (RLW), and 1000-grain weight (TGW) were evaluated in Beijing. Using a BC2F2 population including 216 lines derived from a backcross combination between GSL156 with large grain (71.9 g) and Chuanqi with small grain (12.1 g). The quantitative trait loci (QTLs) for above five grain traits were identified by composite interval mapping using SSR markers. The results showed that the five grain traits exhibited a normal continuous distribution in BC2F2 population, indicating that they were quantitative traits controlled by multiple genes. A total of 28 QTLs conferring the five grain traits were detected on chromosomes 1, 2, 3, 4, 5, 6, and 12, respectively. Fourteen QTLs, namely qGL3-2, qGL3-3, qGT12-1, qGT2-1, qGT5-1, qGW1-1, qGW12-1, qGW2-1, qGW5-1, qRLW3-1, qTGW12-1, qTGW2-1, qTGW3-3,and qTGW5-1, were main-effect QTLs and explained 13.70%, 52.51%, 21.13%, 18.79%, 20.92%, 14.59%, 18.33%, 30.03%, 20.05%, 24.53%, 13.47%, 11.43%, 21.30%, and 15.68% of the observed phenotypic variance, respectively. Among them, most QTLs were mapped on chromosome 3. Six QTLs had the alleles contributing to positive effect which were derived from small grain parent Chuanqi while the other 22 QTLs alleles from large grain parent GSL156. The modes of gene action were mainly additive or partial dominance. The marker interval RM7580–RM8208 on chromosome 3 was common to the three QTLs for GW, RLW, and TGW, respectively. The marker interval, RM7636–RM5812 on chromosome 2, RM3351–RM26 on chromosome 5, and RM1103–RM17 on chromosome 12, were common to the three major QTLs, which were associated with GW, GT and TGW, respectively.The eight SSR markers used in this study would be useful in molecular breeding in rice. The alleles from parent with larger grain were showed significant effects on GL, GW, GT, and TGW.

Key words: Rice, Grain trait, SSR marker, Quantitative trait locus

[1]Khush G. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005, 59: 1-6
[2]Doganlar S, Frary A, Tanksley S D. The genetic basis of seed-weight variation: tomato as a model system. Theor Appl Genet, 2000, 100: 1267-1273
[3]Takeda K, Saito K. Major genes controlling grain size of rice. Jpn J Breed, 1990, 30: 280-282
[4]Webb B D. Rice quality and grades. In: Luh B S ed. Rice Utilization. New York: Van Nostrand Reinhold, 1991. pp 89-119
[5]Xu Z-J(徐正进), Chen W-F(陈温福), Ma D-R(马殿荣), Lü Y-N(吕英娜), Zhou S-Q(周淑清), Liu L-X(刘丽霞). Correlations between rice grain shapes and main qualitative characteristics. Acta Agron Sin (作物学报), 2004, 30(9): 894-900 (in Chinese with English abstract)
[6]Shi C-H(石春海). Seed shape and breeding for good quality in rice. China Agric Bull (中国农学通报), 1994, 10(10): 41-45 (in Chinese with English abstract)
[7]Meng Q-H(孟庆虹), Pan G-J(潘国君), Li X-H(李霞辉), Zhang R-Y(张瑞英), Yao X-M(姚鑫淼), Wang W-W(王伟威), Guan H-T(关海涛), Huang X-H(黄晓群), Wang C(王翠). Grain thickness of japonica rice varieties and its influence on eating quality. Chin J Rice Sci (中国水稻科学),2009, 23(4): 427-432 (in Chinese with English abstract)
[8]Takite T. Breeding for grain shape in rice. Agric Sci, 1989, 44: 39-42
[9]Zhang G-H(张光恒), Zhang G-P(张国平), Qian Q(钱前), Xu L-P(徐律平), Zeng D-L(曾大力), Teng S(滕胜), Bao J-S(包劲松). QTL Analysis of grain shape traits in different environments. Chin J Rice Sci (中国水稻科学), 2004, 18(1): 16-22 (in Chinese with English abstract)
[10]Lin H-X(林鸿宣), Min S-K(闵绍楷), Xiong Z-M(熊振民), Qian H-R(钱惠荣), Zhuang J-Y(庄杰云), Lu J(陆军), Zheng K-L(郑康乐), Huang N(黄宁). RFLP mapping of QTLs for grain shape traits in indica rice (Oryza sativa L. subsp. indica). Sci Agric Sin (中国农业科学), 1995, 28(4): 1-7 (in Chinese with English abstract)
[11]Xing Y-Z(邢永忠), Tan Y-F(谈移芳), Xu C-G(徐才国), Hua J-P(华金平), Sun X-L(孙新立). Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population. Acta Bot Sin (植物学报), 2001, 43(8): 840-845 (in Chinese with English abstract)
[12]Wu C-M(吴长明), Sun C-Q(孙传清), Chen L(陈亮), Li Z-C(李自超), Wang X-K(王象坤). Analysis QTL of grain shape by using of RFLP map in rice. J Jilin Agric Sci (吉林农业科学) 2002, 27(5): 3-7 (in Chinese with English abstract)
[13]Xu J-L(徐建龙), Xue Q-Z(薛庆中), Luo L-J(罗利军), Li Z-K(黎志康). Genetic dissection of grain weight and its related traits in rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2002, 16(1): 6-10 (in Chinese with English abstract)
[14]Li M-M(黎毛毛), Xu L(徐磊), Liu C-W(刘昌文), Cao G-L(曹桂兰), He H-H(贺浩华), Han L-Z(韩龙植). Progress of genetic research and QTL analysis for grain shape in rice. J Agric Sci Technol (中国农业科技导报), 2008, 10(1) : 34-42 (in Chinese with English abstract)
[15]Li M-M(黎毛毛), Xu L(徐磊), Ren J-F(任军芳), Cao G-L(曹桂兰), Yu L-Q(余丽琴), He H-H(贺浩华), Han L-Z(韩龙植), Koh H-J(高熙宗). Identification of quantitative trait loci for grain traits in japonica rice. Sci Agric Sin (中国农业科学), 2009, 42(7): 2255-2261 (in Chinese with English abstract)
[16]Yang L-S(杨联松), Bai Y-S(白一松), Xu C-W(许传万), Hu X-M(胡兴明), Wang W-M(王伍梅), She D-H(佘德红), Chen G-Z(陈桂芝). Research progress of rice grain type and its inheritance. J Anhui Agric (安徽农业科学), 2001, 29(2): 164-167 (in Chinese with English abstract)
[17]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171
[18]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630
[19]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008: 1023-1028
[20]Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18: 1199-1209
[21]Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. A novel Kinesin 13 protein regulating rice seed length. Plant Cell Physiol, 2010, 51: 1315-1329
[22]Tanabe S, Kurinami S, Ashikari M, Kitano H, Iwasaki Y. Mapping of Small and Round Seed 3 gene in rice. Rice Genet Newsl, 2007, 23: 56-58
[23]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu CG, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2009, 40: 761-767
[24]Li J M, Thomason M, McCouch S R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics, 2004, 168: 2187-2195
[25]Bai X F, Luo L J, Yan W H, Kovi M R, Zhan W, Xing Y Z. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet, 2010, 11: 16
[26]Shao G N, Tang S Q, Luo J, Jiao G A, Wei X J, Tang A, Wu J L, Zhuang J Y, Hu P S. Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. J Genet Genomics, 2010, 37: 523-531
[27]Xie X B, Song M H, Jin F X, Ahn S, Suh J P, Hwang H, McCouch S R. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet, 2006, 113: 885-894
[28]Liu T M, Shao D, Kovi M, Xing Y Z. Mapping and validation of quantitative trait loci for spikelets per panicle and 1000-grain weight in rice (Oryza sativa L.). Theor Appl Genet, 2010, 120: 933-942
[29]Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116: 613-622
[30]Han L-Z(韩龙植), Wei X-H(魏兴华). Descriptors and Data Standard for Rice (Oryza sativa L.)(水稻种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006. pp 1-132 (in Chinese)
[31]Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res, 1991, 19: 1349
[32]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321-4326
[33]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607
[34]McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1998, 76: 815-829
[35]Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequences in rice(Oryza sativa L. ). Theor Appl Genet, 2000, 100: 697-712
[36]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR Markers for Rice(Oryza sativa L.). DNA Res (suppl), 2002, 9: 257-279
[37]Chen X; Temnykh S; Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet, 1997, 95: 553-567
[38]Michelmore R W, Kesseli R V, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832
[39]Zhang Q F, Shen B Z, Dai X K, Mei M H, Saghai Maroof M A, Li Z B. Using bulked extremes and recessive class to map genes for photoperiod—sensitive genic male sterility in rice. Proc Natl Acad Sci USA, 1994, 91: 8675-8679
[40]Tanksley S D, Nelson J C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92: 191-203
[41]Lincoln S E, Daly M J, Lander E S. Constructing Genetic Maps with MAPMAKER/EXP 3.0. In: Whitehead Institute Technical Report, 3rd edn. Whitehead Institute, Cambridge, 1992
[42]Gao Y M, Zhu J. Mapping QTLs with digenic epistasis under multiple environments and predicting heterosis based on QTL effects. Theor Appl Genet, 2007, 115: 325-333
[43]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13
[44]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839
[45]Liu J-H(刘仁虎), Meng J-L(孟金陵). MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract)
[46]Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B, Hin H X, Ma H, Zhang G Q, He Z K. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374
[47]Yao G-X(姚国新), Li J-J(李金杰), Zhang Q(张强), Hu G-L(胡广隆), Chen C(陈超), Tang B(汤波), Zhang H-L(张洪亮), Li Z-C(李自超). Mapping grain weight and shape QTLs using four sister near isogenic lines (SNILs) of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2010, 36(8): 1310-1317 (in Chinese with English abstract)
[48]Zeng R-Z(曾瑞珍), Akshay T, Liu F(刘芳), Zhang G-Q(张桂权). Mapping of the QTLs for grain shape using single segment substitution lines in rice. Sci Agric Sin (中国农业科学), 2006, 39(4): 647-654 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!