欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 1020-1030.doi: 10.3724/SP.J.1006.2011.01020

• 耕作栽培·生理生化 • 上一篇    下一篇

江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系

张耗,黄钻华,王静超,王志琴,杨建昌*   

  1. 扬州大学江苏省作物遗传生理重点实验室/农业部长江中下游作物生理生态与栽培重点开放实验室,江苏扬州 225009
  • 收稿日期:2010-12-17 修回日期:2011-03-28 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 通讯作者: 杨建昌,E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317
  • 基金资助:

    本研究由国家自然科学基金重大国际合作交流项目(31061140457),国家自然科学基金项目(31071360),江苏省基础研究计划项目(BK2009005)和教育部博士学科点基金项目(200811170002)资助。

Changes in Morphological and Physiological Traits of Roots and Their Relationships with Grain Yield during the Evolution of Mid-season Indica Rice Cultivars in Jiangsu Province

ZHANG Hao,HUANG Zuan-Hua,WANG Jing-Chao,WANG Zhi-Qin,YANG Jian-Chang*   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Crop Physiology, Ecology and Cultivation in Middle and Lower Reaches of Yangtze River of Ministry of Agriculture, Yangzhou University, Yangzhou 225009, China
  • Received:2010-12-17 Revised:2011-03-28 Published:2011-06-12 Published online:2011-04-12
  • Contact: 杨建昌,E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317

摘要: 以江苏省近60年来各阶段具有代表性的13个中熟籼稻品种(含杂交稻组合)为材料,依据品种种植年代结合株型特点将其分为早期高秆(ET)、矮秆(DC)、半矮秆 (SDC)和超级稻(SR) 4个类型,研究了中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系。结果表明,在各主要生育期,根干重、根重密度、根长、根长密度和根直径随品种演进增加或显著增加。自抽穗期,地上部干物重随品种演进显著增加。在分蘖中期和穗分化始期,超级稻品种的根冠比显著大于其他类型品种,在生育进程中,各类型间无显著差异。在分蘖中期,随品种演进,比根长显著降低,但在生育进程中,各类型间无显著差异。在生长早期和中期,根系氧化力、叶片光合速率、根系总吸收表面积和活跃吸收表面积以及根系伤流液中细胞分裂素(玉米素+玉米素核苷)浓度随品种演进增加或显著增加。随着品种演进产量逐步提高,其原因主要是每穗粒数的增多导致总颖花量的增加。回归分析表明,根干重、根长、根直径、根系氧化力、根系总吸收表面积和根系活跃吸收表面积与产量呈极显著线性正相关关系。说明改善的根系和地上部的生长,促进了现代品种特别是超级稻品种产量的提高。

关键词: 中籼水稻, 根系形态/生理, 产量, 演进

Abstract: Roots are involved in acquisition of nutrients and water, synthesis of plant hormones, and anchorage of plants. However, little is known what changes in root physiology and morphology during the evolution of rice cultivars. In this study, 13 typical mid-season indica rice cultivars (including hybrid combinations) applied in the production in Jiangsu Province during the last 60 years were used, which were classified into four types of early tall cultivars, dwarf cultivars, semi-dwarf cultivars, and super rice cultivars according to their application times, plant types and genotypes. All the tested cultivars were grown in the field and changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of cultivars were investigated. Results showed that the root dry weight, root weight density, root length, root length density and root diameter were increased with the evolution of the cultivars at main growth stages. From the heading stage, the shoot dry weight was increased with the evolution of the cultivars. Compared with other cultivars, the root-shoot ratio of super rice cultivars was increased at the mid-tillering and panicle initiation stages, but showed no significant differences among the four types of cultivars at latter growth stages. Specific root length was decreased with the evolution of the cultivars at the mid-tillering stage, and showed no significant differences among the four types of cultivars at other growth stages. The root oxidation activity, leaf photosynthetic rate, total absorbing surface area and active absorbing surface area of root, and the content of cytokinins (zeatin + zeatin riboside) in root bleeding and grain yield wereincreased with the evolution of the cultivars. Increase in grain yield was attributed mainly to the increase in total number of spikelets, which resulted mainly from a large panicle. Regression analysis showed that the root dry weight, root length, root diameter, root oxidation activity, total absorbing surface area and active absorbing surface area of root very significantly correlated with grain yield. The results suggest that the improved root and shoot growth increases grain yield of the modern cultivars, especially super rice cultivars.

Key words: Mid-season indica rice, Root morphology/physiology, Grain yield, Evolution

[1]Yang J-C(杨建昌), Wang P(王朋), Liu L-J(刘立军), Wang Z-Q(王志琴), Zhu Q-S(朱庆森). Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars. Acta Agron Sin (作物学报), 2006, 32(7): 949–955 (in Chinese with English abstract)
[2]Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104: 16402–16409
[3]Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice: A super-domesticate in China. Ann Bot, 2007, 100: 959–966
[4]Fitter A. Characteristics and functions of root systems. Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots, the Hidden Half. New York: Marcel Dekker Inc, 2002. pp 15–32
[5]Inukai Y, Ashikari M, Kitano H. Function of the root system and molecular mechanism of crown root formation in rice. Plant Cell Physiol, 2004, 45(suppl): 17–19
[6]China National Rice Research Institute (中国水稻研究所). Regionalization of Rice Cropping in China (中国水稻种植区划). Hangzhou: Zhejiang Science & Technology Press, 1988. pp 1–47 (in Chinese)
[7]Zheng J-S(郑景生), Huang Y-M(黄育民). Thrust and practice of super high yielding rice production in China. Mol Plant Breed (分子植物育种), 2003, 1(5/6): 585–596 (in Chinese with English abstract)
[8]Wu W-M(吴伟明), Song X-F(宋祥甫), Sun Z-X(孙宗修), Yu Y-H(于永红), Zou G-Y(邹国燕). Comparison of root distribution between different type rice. Chin J Rice Sci (中国水稻科学), 2001, 15(4): 276–280 (in Chinese with English abstract)
[9]Dong G-C(董桂春), Wang Y-L(王余龙), Wang J-G(王坚刚), Shan Y-H(单玉华), Ma A-J(马爱京), Yang H-J(杨洪建), Zhang C-S(张传胜), Cai H-R(蔡惠荣). Study on the differences of root traits between various types of varieties in rice. Acta Agron Sin (作物学报), 2002, 28(6): 749–755 (in Chinese with English abstract)
[10]Zhu D-F(朱德峰), Lin X-Q(林贤青), Cao W-X(曹卫星). Characteristics of root distribution of super high-yielding rice varieties. J Nanjing Agric Univ (南京农业大学学报), 2000, 23(4): 5–8 (in Chinese with English abstract)
[11]Zhang H(张耗), Tan G-L(谈桂露), Sun X-L(孙小淋), Liu L-J(刘立军), Yang J-C(杨建昌). Changes in grain quality during the evolution of mid-season indica rice cultivars in Jiangsu province. Acta Agron Sin (作物学报), 2009, 35(11): 2037–2044 (in Chinese with English abstract)
[12]Yang J-C(杨建昌), Wang Z-Q(王志琴), Zhu Q-S(朱庆森). Effect of nitrogen nutrient on rice yield and its physiological mechanism under different status of soil moisture. Sci Agric Sin (中国农业科学), 1996, 29(4): 58–66 (in Chinese with English abstract)
[13]Xiao L-T(萧浪涛), Wang S-G(王三根). Experimental Techniques of Plant Physiology (植物生理学实验技术). Beijing: China Agriculture Press, 2005. pp 61–62 (in Chinese)
[14]Cheng C Y, Lur H S. Ethylene may be involved in abortion of the maize caryopsis. Physiol Plantarum, 1996, 98: 245–252
[15]Chen Y-P(陈远平), Yang W-Y(杨文钰). Determination of GA3, IAA, ABA and ZT in Dormant Buds of Allium ovalifolium by HPLC. J Sichuan Agric Univ (四川农业大学学报), 2005, 23(4): 498–500 (in Chinese with English abstract)
[16]Ling Q-H(凌启鸿). Quality of Crop Population (作物群体质量). Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 42–107 (in Chinese)
[17]Liu W-Z(刘文兆), Li Y-Y(李秧秧). Effect of crop root-cutting on grain yield and water use efficiency: a review. Acta Bot Boreali-Occident Sin (西北植物学报), 2003, 23(8): 1320–1324 (in Chinese with English abstract)
[18]Harada J, Kang S, Yamazaki K. Root system development of japonica-indica hybrid rice cultivars. Jpn J Crop Sci, 1994, 63: 423-429
[19]Kang S, Morita S, Yamazaki K. Root growth and distribution in some japonica-indica hybrid and japonica type rice cultivars under field conditions. Jpn J Crop Sci, 1994, 63: 118–124
[20]Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the New Plant Type of tropical rice lines. J Plant Nutr, 2005, 28: 835–850
[21]Yang J-C(杨建昌). Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin (中国农业科学), 2011, 44(1): 36–46 (in Chinese with English abstract)
[22]Pan X-H(潘晓华), Wang Y-R(王永锐), Fu J-R(傅家瑞). Advance in the study on the growth-physiology in rice of root system (Oryza sativa). Chin Bull Bot (植物学通报), 1996, 13(2): 13–20 (in Chinese with English abstract)
[23]Sun J-W(孙静文), Chen W-F(陈温福), Zang C-M(臧春明), Wang Y-R(王彦荣), Wu S-Q(吴淑琴). Advances of research on rice root systems. J Shenyang Agric Univ (沈阳农业大学学报), 2002, 33(6): 466–470 (in Chinese with English abstract)
[24]Zhang C-L(张成良), Jiang W(姜伟), Xiao Y-Q(肖叶青), Wu W-C(邬文昌), Chen D-Z(陈大洲), Huang Y-J(黄英金). Status and prospects of research on rice root systems. Acta Agric Jiangxi (江西农业学报), 2006, 18(5): 23–27 (in Chinese with English abstract)
[25]Passioura J B. Roots and drought resistance. Agric Water Manag, 1983, 7: 265–280
[26]Cai K-Z(蔡昆争), Luo S-M(骆世明), Duan S-S(段舜山). The response of the rice root system to nitrogen conditions under-root confinement. Acta Ecol Sin (生态学报), 2003, 23(6): 1109–1116 (in Chinese with English abstract)
[27]Wang Q(汪强), Fan X-L(樊小林), Liu F(刘芳), Klaus D, Sattemacher B. Effect of root cutting on rice yield by shifting normal paddy to upland cultivation. Chin J Rice Sci (中国水稻科学), 2004, 18(5): 437–442 (in Chinese with English abstract)
[28]Liu T-J(刘桃菊), Qi C-H(戚昌瀚), Tang J-J(唐建军). Studies on relationship between the character parameters of root and yield formation in rice. Sci Agric Sin (中国农业科学), 2002, 35(11): 1416–1419 (in Chinese with English abstract)
[29]Yang J, Zhang J. Grain filling problem in “super” rice. J Exp Bot, 2010, 61: 1–5
[30]Yang J-C(杨建昌). Mechanism and regulation in the filling of inferior spikelets of rice. Acta Agron Sin (作物学报), 2010, 36(12): 2011–2019 (in Chinese with English abstract)
[31]Kobata T, Palta J A, Turner N C. Rate of development of postanthesis water deficits and grain-filling of spring wheat. Crop Sci, 1992, 32: 1238–1242
[32]Samonte S, Wilson L T, McClung A M, Tarpley L. Seasonal dynamics of non-structural carbohydrate partitioning in 15 diverse rice genotypes. Crop Sci, 2001, 41: 902–909
[33]Gebbing T, Schnyder H. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol, 1999, 121: 871–878
[34]Takai T, Fukuta Y, Shirawa T, Horie T. Time-related mapping of quantitative trait loci controlling grain-filling in rice. J Exp Bot, 2005, 56: 2107–2118
[35]Cao X-Z(曹显祖), Zhu Q-S(朱庆森), Gu Z-F(顾自奋). Study on the percentage of filled grain in hybrid rice. Jiangsu Agric Sci (江苏农业科学), 1981, (1): 1–7 (in Chinese with English abstract)
[36]Peng S, Buresh R, Huang J, Yang J, Zou Y, Zhong X, Wang G, Zhang F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37–47
[37]Zhang H, Zhang S F, Yang J C, Zhang J H, Wang Z Q. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agron J, 2008, 100: 726–734
[38]Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci, 2009, 49: 2246–2260
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!