欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1315-1323.doi: 10.3724/SP.J.1006.2011.01315

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

betA基因增强小麦的干热风抗性

张伟伟1,何春梅2,张举仁1,*   

  1. 1山东大学生命科学学院, 山东济南 250100; 2山东省农业科学院玉米研究所 / 国家玉米改良中心济南分中心, 山东济南 250100
  • 收稿日期:2010-12-17 修回日期:2011-04-26 出版日期:2011-08-12 网络出版日期:2011-06-13
  • 通讯作者: 张举仁, E-mail: jrzhang@sdu.edu.cn, Tel: 0531-88364350
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2008ZX08003-004)资助。

Introduction of betA Gene Enhancing Tolerance to Hot-Dry Windy Tolerance in Wheat

ZHANG Wei-Wei1,HE Chun-Mei2,ZHANG Ju-Ren1,*   

  1. 1 School of Life Science, Shandong University, Jinan 250100, China; 2 Maize Institute, Shandong Academy of Agricultural Sciences / Jinan Sub-Center of National Maize Improvement, Jinan 250100, China
  • Received:2010-12-17 Revised:2011-04-26 Published:2011-08-12 Published online:2011-06-13
  • Contact: 张举仁, E-mail: jrzhang@sdu.edu.cn, Tel: 0531-88364350

摘要: 甜菜碱是细胞内重要的渗透调节物质,其积累能有效提高植物对非生物逆境的抗性。以转betA基因小麦和未转基因的野生型为材料,在灌浆期模拟干热风胁迫处理植株3 d,研究干热风对植株生长和籽粒产量的影响。胁迫处理后,转基因植株保持较好长势,叶片青枯失水较少,旗叶持绿面积显著大于野生型。各株系植株的光合作用能力和蔗糖磷酸合成酶(SPS)及蔗糖合成酶(SS)活性在胁迫处理后都下降,转基因植株的净光合速率下降到2.3~3.7 μmol CO2 m-2 s-1,而野生型下降到1.2 μmol CO2 m-2 s-1;野生型植株的SPS和SS活性的下降幅度分别为处理前56.8%和53.9%, 而转基因株系的下降幅度分别为62.3%~69.8%和56.5%~64.5%。干热风胁迫使得各株系植株的旗叶甜菜碱含量升高,但转基因株系的叶片甜菜碱含量比野生型的高18%~87%。在甜菜碱保护作用下,转基因植株在胁迫条件下能够维持较高的光合速率,合成较多的碳水化合物,使得百粒重和单株产量均高于野生型。因此,通过转betA基因可显著提高小麦在干热风处理条件下的甜菜碱含量从而增强其抗干热风能力。

关键词: 小麦, betA基因, 甜菜碱, 干热风抗性, 产量

Abstract: Hot-dry windy climate is the weather phenomenon of low humidity, high temperature, and wind stress occurring simultaneously, which causes great reduction of wheat yield in northern China during grain filling. As a compatible solute in cells, glycinebetaine plays an important role in tolerance to environmental stresses of plants. In this study, we used three betA transgenic wheat lines and their wild type (WT) to disclose the effects of glycinebetaine accumulation on the growth and yield components of wheat plants suffering from hot-dry windy stress for three days. After the hot-dry windy treatment, the transgenic plants maintained more vigorous growth compared with the WT and showed slower dehydration rates of flag leaf with significantly larger green blade area than that of WT. Under the hot-dry windy stress, the photosynthetic ability and the activities of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in flag leaf were reduced in both transgenic lines and the WT. However, the reductions were smaller in the transgenic lines than in the WT. After 3-day of stress, the net photosynthetic rates of the transgenic lines fell to 2.3–3.7 μmol CO2 m-2 s-1, while that of the WT plant was 1.2 μmol CO2 m-2 s-1. After the 3-day stress, the activities of SPS and SS were decreased to 62.3–69.8% of the levels before stress treatment in the transgenic lines of those before stress, whereas those were decreased to 56.5–64.5% of the levels before treatment in the WT plant. The glycinebetaine contents in flag leaf were increased in all lines, especially in the transgenic lines (18–87% higher than that of WT). Based on these results, we concluded that under the protection of glycinebetaine, the transgenic plants could maintain higher net photosynthetic rate than that of the WT plant, resulting in more accumulation of carbohydrate and higher grain yield per plant and 100-grain weight after the stress of hot-dry windy stress. Therefore, the betA transgenic wheat might be practical in improving tolerance to the hot-dry windy climate in winter wheat.

Key words: Wheat, betA transgene, Glycinebetaine, Resistance to hot-dry windy, Yield

[1]Liu H J, Kang Y H. Regulating field microclimate using sprinkler misting under hot-dry windy conditions. Biosyst Eng, 2006, 95: 349–358
[2]Saneoka H, Nagasaka C, Hahn D T, Yang W J, Premachandra G S, Joly R J, Rhodes D. Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiol, 1995, 107: 631–638
[3]Jagendorf A T, Takabe T. Inducers of glycinebetaine synthesis in barley. Plant Physiol, 2001, 127: 1827–1835
[4]Park E J, Jekni? Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen T H H. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants and flowers from chilling damage. Plant J, 2004, 40: 474–487
[5]Naidu B P, Cameron D F, Konduri S V. Improving drought tolerance of cotton by glycinebetaine application and selection. In: Proceedings of the 9th Australian Agronomy Conference, Australia, Wagga, 1998. pp 355–358
[6]Xing W B, Rajashekar C B. Alleviation of water stress in beans by exogenous glycine betaine. Plant Sci, 1999, 148: 185–195
[7]Chen W P, Li P H, Chen T H H. Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ, 2000, 23: 609–618
[8]Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ, 2002, 25: 163–171
[9]Chen T H H, Murata N. Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol, 2002, 5: 250–257
[10]Lü S L, Yang A F, Zhang K W, Wang L, Zhang J R. Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed, 2007, 20: 233–248
[11]Saneoka H, Moghaieb R E A, Premachandra G S, Fujita K. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environ Exp Bot, 2004, 52: 131–138
[12]Quan R D, Shang M, Zhang H, Zhao Y X, Zhang J R. Engineering of enhanced glycinebetaine synthesis improves drought tolerance in maize. Plant Biotechnol J, 2004, 2: 477–486
[13]Ashraf M, Foolad M R. Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 2007, 59: 206–216
[14]He C M, Yang A F, Zhang W W, Gao Q, Zhang J R. Improved salt tolerance of transgenic wheat by introducing betA gene for glycinebetaine synthesis. Plant Cell Tissue Organ Cult, 2010, 101: 65–78
[15]He C M, Zhang W W, Gao Q, Yang A F, Hu X R, Zhang J R. Enhancement of drought resistance and biomass by increasing the amount of glycinebetaine in wheat seedlings. Euphytica, 2010, 177: 151–167
[16]Jones G P. Estimates of solutes accumulating in plants by 1H nuclear magnetic resonance spectroscopy. Aust J Plant Physiol, 1986, 13: 649–658
[17]Wang J-Y(王晶英), Ao H(敖红), Zhang J(张杰). Principles and Techniques for Experiments in Plant Physiology and Biochemistry (植物生理生化实验技术与原理). Harbin: Northeast Forestry University Publishers, 2003. pp 11–12 (in Chinese)
[18]Rorem E S, Walker H G Jr, McCready R.M. Biosynthesis of sucrose and sucrosephosphate by sugar beet leaf extracts. Plant Physiol, 1960, 35: 269–272
[19]Arnon D I. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15
[20]Rufty T W, Kerr P S, Huber S C. Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiol, 1983, 73: 428–433
[21]Yang Q-F(杨巧凤), Jiang H(江华), Xu D-Q(许大全). Changes in photosynthetic efficiency of flag leaves of wheat during development. Acta Phytophysiol Sin (植物生理学报), 1999, 25(4): 408–412 (in Chinese with English abstract)
[22]Yang X H, Liang Z, Lu C M. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol, 2005, 38: 2299–2309
[23]Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y, Liang Z, Lu C. Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta, 2007, 225: 719–733
[24]Li Y-H(李永华), Wang W(王玮), Yang X-H(杨兴洪), Zou Q(邹琦). Expression of BADH and betaine content in wheat cultivars with different drought resistance under drought stress. Acta Agron Sin (作物学报), 2005, 31(4): 425–430 (in Chinese with English abstract)
[25]Wang Z-L(王振林), He M-R(贺明荣), Fu J-M(傅金民), Tian Q-Z(田奇卓), Yin Y-P(尹燕枰), Cao H-M(曹鸿鸣). Effects of source sink manipulation on production and distribution of photosynthate after flowering in irrigated and rainfed wheat. Acta Agron Sin (作物学报), 1999, 25(2): 162–168 (in Chinese with English abstract)
[26]Guo W-S(郭文善), Shi J-S(施劲松), Peng Y-X(彭永欣), Feng C-N(封超年), Ge C-L(葛才林), Zhu X-K(朱新开). The effect of high temperature to the transfer of the photosynthate in wheat. Acta Agric Nucl Sin (核农学报), 1998, 12(1): 21–27 (in Chinese)
[27]Lei Z-S(雷振生), Lin Z-J(林作楫), Yang H-M(杨会民), Chen Q-G(陈钦高). Studies on the yield structures and associated physiological basis of high-yielding winter wheat cultivars in Huang-Huai wheat region. Acta Agric Boreali-Sin (华北农学报), 1996, 11(1): 70–75 (in Chinese)
[28]Xiong F-S(熊福生), Gao Y-Z(高煜珠), Zhan Y-C(詹勇昌), Li G-F(李国锋). The relationship between the accumulation and the degrading-enzyme activation in plant leaves. Acta Agron Sin (作物学报), 1994, 20(1): 52–58 (in Chinese with English abstract)
[29]Li Y-G(李永庚), Yu Z-W(于振文), Jiang D(姜东), Yu S-L(余松烈). Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high-yielding wheat. Acta Agron Sin (作物学报), 2001, 27(5): 658–664 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!