欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1605-1615.doi: 10.3724/SP.J.1006.2011.01605

• 耕作栽培·生理生化 • 上一篇    下一篇

基于控制授粉技术的玉米籽粒生育特性与建成机制研究

冯汉宇,王志敏,孔凡娜,张敏洁,周顺利*   

  1. 农业部农作制度重点开放实验室 / 中国农业大学农学与生物技术学院,北京 100193
  • 收稿日期:2011-02-11 修回日期:2011-04-27 出版日期:2011-09-12 网络出版日期:2011-06-28
  • 通讯作者: 周顺利, E-mail: zhoushl@cau.edu.cn
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(nyhyzx07-003, 200903007)资助。

Mechanism of Maize Kernel Setting and Characteristics of Kernel Growth and Development Studied by Controlling Pollination

FENG Han-Yu,WANG Zhi-Min,KONG Fan-Na,ZHANG Min-Jie,ZHOU Shun-Li*   

  1. Key Laboratory of Farming System, Ministry of Agriculture / College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2011-02-11 Revised:2011-04-27 Published:2011-09-12 Published online:2011-06-28
  • Contact: 周顺利, E-mail: zhoushl@cau.edu.cn

摘要: 为了探明玉米果穗不同部位籽粒生育特性及其相互之间的关系,通过中下部不授粉、整行不授粉和中上部先授粉等3种控制授粉方式,研究了3个玉米品种受精子房生育特性及其与结实率之间的关系。结果表明,控制授粉后,玉米顶部籽粒的干重和体积提高,生长发育正常,但穗粒数与穗粒重下降。底部和中部花丝不授粉的顶部籽粒,其干重与统一完全授粉和自然授粉处理的中、底部籽粒差异不大,但同穗籽粒以顶部籽粒的干重、体积为小。整行不授粉和中上部先授粉处理提高了授粉花丝的结实率,整行不授粉处理的结实率与籽粒干重、体积呈极显著正相关,中上部先授粉处理的结实率与籽粒干重、体积则呈显著负相关关系。说明玉米果穗顶部籽粒是可以正常发育的,其粒重也是可以调节的,不足的物质供应可能是顶部籽粒不能正常发育和粒重低的根本原因,增源扩库是提高穗粒重的有效措施。

关键词: 玉米, 控制授粉, 籽粒败育, 粒重, 结实率

Abstract: In order to clarify the characteristics of kernel growth and development within different maize ear regions and their relationships, the changes of kernel weight and kernel volume of fertilized ovaries, and their relationships with kernel setting rate of three maize cultivars were studied by three types of controlling pollination, including no-pollination within middle or basal region of ear (type I), no-pollination of whole row filaments of ear (type II) and preferred pollination of apical-middle filaments of ear (type III). The results showed that the weight and volume of apical kernel were improved and developed normally, but the ear kernel number and ear kernel weight decreased by applying the controlling pollination. For the apical kernel of type I, there were no significant differences in weight and volume compared with the middle or basal kernel of the treatment of complete pollination at the same time and the treatment of natural pollination, but the weight and volume of the apical kernel was the smallest in a maize ear. The kernel setting rate was improved in type II and type III. Correlation analysis showed that grain dry weight and volume were significantly positively correlated with kernel setting rate at P<0.01 in type II but significantly negatively at P<0.05 in type III. These data indicate that the apical kernel of maize ear can develop normally and its kernel weight also can be regulated, the shortage of nutrient supply may be the fundamental reason of the abortion and lower weight of apical kernels, and it is an effective practice to improve ear kernel weight by enlarging the source and sink.

Key words: Maize, Controlling pollination, Kernel abortion, Kernel weight, Kernel setting rate

[1]Gao X-Z(高学曾), Wang Z-X(王忠孝), Xu J-F(许金芳), Luo Y-N(罗瑶年), Liu Y-J(刘玉敬). Relationship between yield and grain number per ear, 1000-grain weight of maize. Shandong Agric Sci (山东农业科学), 1989, (2): 4–7 (in Chinese with English abstract)
[2]Chen G-P(陈国平), Wang R-H(王荣焕), Zhao J-R(赵久然). Analysis on yield structural model and key factors of maize high-yield plots. J Maize Sci (玉米科学), 2009, 17(4): 89–93 (in Chinese with English abstract)
[3]NeSmith D S, Ritchie J T. Effects of soil water-deficits during tassel emergence on development and yield components of maize (Zea mays L.). Field Crops Res, 1992, 28: 251–256
[4]Otegui M E, Andrade F H, Suero E E. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Res, 1995, 40: 87–94
[5]Zheng Z-L(郑卓琳), Hu Y-H(胡寅华). Studies on interrelationships between the type, shape, and critical stage of female ear florets in maize (Zea mays L.) and kernal formation. J Agric Univ Hebei (河北农业大学学报), 1990, 13(4): 34–38 (in Chinese with English abstract)
[6]Otegui M E. Kernel set and flower synchrony within the ear of maize: II. Plant population effects. Crop Sci, 1997, 37: 448–455
[7]Zhao T-H(赵天宏), Shen X-Y(沈秀瑛), Yang D-G(杨德光). Effect of water stress on maize kernel yield and ear characteristics during tasselling stage. Liaoning Agric Sci (辽宁农业科学), 2002, (6): 5–7 (in Chinese with English abstract)
[8]Hashemi A M, Herbert S J, Putnam D H. Yield response of corn to crowding stress. Agron J, 2005, 97: 839–846
[9]Shen L-X(申丽霞), Wang P(王璞), Lan L-W(兰林旺), Sun X-H(孙西欢). Effect of nitrogen supply on carbon-nitrogen metabolism and kernel set in summer maize. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(6): 1074–1079 (in Chinese with English abstract)
[10]Hanft J M, Jones R J, Stumme A B. Dry matter accumulation and carbohydrate concentration patterns of field-grown and in vitro cultured maize kernels from the tip and middle ear positions. Crop Sci, 1986, 26: 568–572
[11]Boyle M G, Boyer J S, Morgan P W. Stem infusion of liquid culture medium prevents reproductive failure of maize at low water potential. Crop Sci, 1991, 31: 1246–1252
[12]Hanft J M, Jones R J. Kernel abortion in maize: II. Distribution of 14C among kernel carbohydrates. Plant Physiol, 1986, 81: 511–515
[13]Sun G-W(孙国伟), Zhang F-L(张凤路), Guo J(郭江), Zhao J-R(赵久然), Guo J-L(郭景伦). Discuss on the cause of maize kernel abortion. J Maize Sci (玉米科学), 2004, 12(S2): 35–37 (in Chinese with English abstract)
[14]Ho L C. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Annu Rev Plant Physiol Plant Mol Biol, 1988, 39: 355–378
[15]Cheng C Y, Lur H S. Ethylene may be involved in abortion of the maize caryopsis. Physiol Plant, 1996, 98: 245–252
[16]Hanft J M, Reed A J, Jones R J, McLaren J S. Effect of 1-aminocyclopropane-l-carboxylic acid on maize kernel development in vitro. J Plant Growth Regul, 1990, 9: 89–94
[17]Reed A J, Singletory G W, Schussler J R, Williamson D R, Christy A L. Shading effects on dry matter and nitrogen partitioning, kernel number, and yield of maize. Crop Sci, 1988, 28: 819–825
[18]Setter T L, Flannigan B A. Sugar and starch redistribution in maize in response to shade and ear temperature treatment. Crop Sci, 1986, 26: 575–579
[19]Hu Y-H(胡寅华). The effect of defolliar on ear character and yield of summer maize. J Maize Sci (玉米科学), 1996, 4(1): 46–50 (in Chinese with English abstract)
[20]Egharevba P N, Horrocks R D, Zuber M S. Dry matter accumulation in maize in response to defoliation. Agron J, 1976, 68: 40–44
[21]Tian H-Y(田海云), Yin Z-R(尹枝瑞), Li W-Y(李维岳). Corn grain development and its relationship with the cultivation conditions. Jilin Agric Sci (吉林农业科学), 1981, (3): 22–26 (in Chinese with English abstract)
[22]Yin Z-R(尹枝瑞), Li W-Y(李维岳). Preliminary study on maize floret and kernel number. Jilin Agric Sci (吉林农业科学), 1986, (1): 1–5 (in Chinese with English abstract)
[23]Li B-H(李伯航), Cui Y-H(崔彦宏). Studies on the relationship between endosperm cell development and kernel weight of summer-maize (Zea mays L.). J Agric Univ Hebei (河北农业大学学报), 1989, 12(4): 399–451 (in Chinese with English abstract)
[24]Zhao K-F(赵可夫). Crop Physiology (作物生理学). Jinan: Shandong Science and Technology Press, 1980. pp 331–359 (in Chinese)
[25]Yu S-R(俞世蓉). The impact of pollination conditions on maize seed. Jiangsu Agric Sci (江苏农学报), 1963, 2(4): 81–93 (in Chinese with English abstract)
[26]Li C(李纯), Long Z-R(龙正容), Zhang H-N(张会南), Zuo X-L(左小龙). Studies on the characteristics of maize flowering in Hefei area. J Anhui Agric Sci (安徽农业科学), 1986, (1): 24–27 (in Chinese)
[27]Zhang F-L(张凤路), Cui Y-H(崔彦宏), Wang Z-M(王志敏), Zhao M(赵明), Wang S-A(王树安), Zhao J-R(赵久然), Guo J-L(郭景伦). Studies on the relation between pedicel vascular development and maize kernel abortion. J Agric Univ Hebei (河北农业大学学报), 1999, 22(1): 16–19 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!