作物学报 ›› 2012, Vol. 38 ›› Issue (01): 129-139.doi: 10.3724/SP.J.1006.2012.00129
陈兵1,2,3,王克如1,2,李少昆1,2,*,肖春华1,2,苏毅1,唐强1,陈江鲁1,金秀良1,吕银亮1,刁万英1,王楷1
CHEN Bing1,2,3,WANG Ke-Ru1,2,LI Shao-Kun1,2,*,XIAO Chun-Hua1,2,SU Yi1,TANG Qiang1,CHEN Jiang-Lu1,JIN Xiu-Liang1,LÜ Yin-Liang1,DIAO Wan-Ying1,WANG Kai1
摘要: 研究TM卫星影像最佳时相(单一时相)对黄萎病疑似病害棉田诊断和分类的技术与方法,为棉花生产提供具有针对性的管理方案,对促进棉田均衡增产、增效具有重要的意义。本研究通过分析试验区多时相卫星影像及准同步地面调查数据,从中优选病害棉田卫星影像诊断的最佳波段和时相,对黄萎病疑似病害棉田分类并地面验证。结果表明,棉花的关键生育期,健康与病害棉田在TM影像上明显不同,由此建立病害棉田解译标志是可行的,TM4波段可作为病害棉田卫星监测的最佳波段,棉花盛铃期(7月下旬至8月中旬)可作为黄萎病卫星监测的最佳时相。基于上述分析,在病害发生的最佳时相,利用平行六面体监督分类方法将示范区黄萎病疑似病害棉田划分为健康、轻病和重病棉田,其中2年病害棉田的面积分别占29%和23%。2年黄萎病疑似病害棉田分类结果的总体精度和Kappa系数均高于85%。进一步制作的棉花病田专题图也很好地反映了棉田内部的病害情况。因此,可利用多时相遥感数据进行棉花黄萎病疑似病田的诊断。
[1]Li G-Y(李国英). Study on strategy and technology of cotton primary diseases in Xinjiang. Xinjiang Farmland Sci & Technol (新疆农垦科技), 2000, (4): 23–25 (in Chinese with English abstract) [2]Song Q-P(宋庆平), Chen Q(陈谦), Chen H(陈红), Gou C-H(苟春红). Prospect on strategy and technology of protection and control diseases and insects in Xinjiang cotton fields. China Cotton (中国棉花), 2002, 29(12): 7–9 (in Chinese with English abstract) [3]Zhang H(张慧), Yang X-M(杨兴明), Ran W(冉炜), Xu Y-C(徐阳春), Shen Q-R(沈其荣). Screening of bacteria antagonistic against soil-borne cotton Verticillium wilt and their biological effects on the soil-cotton system. Acta Pedol Sin (土壤学报), 2008, 45(6): 1095–1101 (in Chinese with English abstract) [4]Humid Muhammad H. Hyperspectral crop reflectance data for characteristic and estimating fungal disease severity in wheat. Biosyst Eng, 2005, 91: 9–20 [5]Adams M L, Norvel W A, Philpot W D, Peverly J H. Toward the discrimination of manganese, zinc, copper, and iron deficiency in ‘bragg’ soybean using spectral detection methods. Agron J, 2000, 92, 268–274 [6]Tilling A K, O’Leary G J, Ferwerda J G, Jones S D, Glenn J F, Rodriguez D, Belford R. Remote sensing of nitrogen and water stress in wheat. Field Crops Res, 2007, 104: 77–85 [7]Yang B-J(杨邦杰), Wang M-X(王茂新), Pei Z-Y(裴志远). Monitoring freeze injury to winter wheat using remote sensing. Trans CSAE (农业工程学报), 2002, 18(2): 136–140 (in Chinese with English abstract) [8]Mirik M, Michels Jr G J, Kassymzhanova-Mirik S, Elliott N C. Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat. Comput Electron Agric, 2007, 57: 123–134 [9]Sun H(孙红), Li M-Z(李民赞), Zhou Z-Y(周志艳), Liu G(刘刚), Luo X-W(罗锡文). Monitoring of cnaphalocrocis medinalis guenee based on canopy reflectance. Spectroscopy Spectral Anal (光谱学与光谱分析), 2010, 30(4): 1080–1083 (in Chinese with English abstract) [10]Johnson D A, Richard Alldredge J, Hamm P B, Frazier B E. Aerial photography used for spatial pattern analysis of late blight infection in irrigated potato circles. Phytopathology, 2003, 93: 805–812 [11]Huang W J, Lamb D W, Niu Z, Zhang Y J, Liu Y J, Wang J H. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis Agric, 2007, 8: 187–197 [12]Pu R L, Kelly M, Anderson G L, Gong P. Using CASI hyperspectral imagery to detect mortality and vegetation stress associated with a new hardwood forest disease. Photogramm Eng Rem Sens, 2008, 74: 65–75 [13]Wu D(吴迪), Feng L(冯雷), Zhang C-Q(张传清), He Y(何勇). Early detection of gray mold (Cinerea) on eggplant leaves based on vis/near infrared spectra. J Infrared Mill Waves (红外与毫米波学报), 2007, 26(4): 269–273 (in Chinese with English abstract) [14]Lathrop L D, Pennypacker S. Spectral classification of tomato disease severity levels. Photogramm Eng Rem Sens, 1980, 46: 1133–1138 [15]Malthus T J, Madeira A C. Height resolution spectradiometry: spectral reflectance of field bean leaves infected by Botrytis fabae. Remote Sens Environ, 1993, 45: 107–116 [16]Zhang H(张浩), Mao X-Q(毛雪琴), Zhang Z(张震), Zheng K-F(郑可锋), Du X-F(杜新法), Sun G-C(孙国昌). Hyperspectral remote sensing retriveral models of rice neck blasts severity. Res Agric Mod (农业现代化研究), 2009, 30(3): 369–372 (in Chinese with English abstract) [17]Franke J, Menz G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis Agric, 2007, 8: 161–172 [18]Liu L-Y(刘良云), Song X-Y(宋晓宇), Li C-J(李存军), Qi L(齐腊), Huang W-J(黄文江), Wang J-H(王纪华). Monitoring and evaluation of the diseases of and yield winter wheat from multi-temporal remotely-sensed data. Trans CSAE (农业工程学报), 2009, 25(1): 137–143 (in Chinese with English abstract) [19]Zhang H-M(张宏名), Li Q-J(李庆基), Wang J-S(王家圣). The mathod for detecting withered and Verticillium wilt of cotton by remote sensing. Plant Protect (植物保护), 1991, 17(6): 6–8 (in Chinese) [20]Jing X(竞霞), Huang W-J(黄文江), Ju C-Y(琚存勇), Xu X-G(徐新刚). Remote sensing monitoring severit level of cotton Verticillium wilt base on partial least squares regressive analysis. Trans CSAE (农业工程学报), 2010, 26(8): 229–235 (in Chinese with English abstract) [21]Liu J, Pattey E, Miller J R, McNairn H, Smith A M, Hu B.Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sens Environ, 2010, 114: 1167–1177 [22]Chen B, Wang K R, Li S K, Xiao C H, Chen J L, Jin X L. Estimating severity level of cotton infected Verticillium wilt based on spectral indices of TM image. Sensor Lett, 2011, 9: 1157–1163 [23]Feng Z-C(冯志超). Effect of withered and Verticillium wilts of cotton in kuytun reclamation area on the yield and their control tactics. Xinjiang Agric Sci (新疆农业科学), 2004, 41(5): 367–369 (in Chinese with English abstract) [24]Qin P(秦鹏), Chen J-F(陈健飞). Comparison between color normalized and HSV sharpen in methods in extracting urban vegetation information from ASTER image. J Geoinformation Sci (地球信息科学学报), 2009, 11(3): 400–404 (in Chinese with English abstract) [25]Sivakumar M V K, Roy P S, Harmsen K, Saha S K. Satellite remote sensing and GIS applications in agricultural meteorology. World Meteorological Organization 7bis, Avenue de la Paix1211 Geneva 2, Switzerland.2004 [26]Chen B(陈兵), Li S-K(李少昆), Wang K-R(王克如), Bai J-H(柏军华), Sui X-Y(隋学艳), Bai C-Y(白彩云). Studies of remote sensing on monitoring crop diseases and pests. Cotton Sci (棉花学报), 2007, 19(1): 57–63 (in Chinese with English abstract) |
[1] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[4] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[5] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[6] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[7] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[8] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[9] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[10] | 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826. |
[11] | 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671. |
[12] | 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437. |
[13] | 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521. |
[14] | 竞霞, 邹琴, 白宗璠, 黄文江. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079. |
[15] | 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120. |
|