欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (01): 55-61.doi: 10.3724/SP.J.1006.2012.00055

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻籽粒维生素E及组分在品种间的变异与分布

张桂云1,刘如如1,张鹏2,徐勇1,朱姜2,顾铭洪1,梁国华1,刘巧泉1,*   

  1. 1江苏省作物遗传生理重点实验室 / 植物功能基因组学教育部重点实验室,江苏扬州225009;2国家洗簌用品质量监督检验中心,江苏扬州225009
  • 收稿日期:2011-06-10 修回日期:2011-09-14 出版日期:2012-01-12 网络出版日期:2011-11-07
  • 通讯作者: 刘巧泉, E-mail: qqliu@yzu.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2012CB944803)和国家自然科学基金项目(31071383)资助。

Variation and Distribution of Vitamin E and Composition in the Seeds among Different Rice Varieties

ZHANG Gui-Yun1,LIU Ru-Ru1,ZHANG Peng2,XU Yong1,ZHU Jiang2,GU Ming-Hong1,LIANG Guo-Hua1,LIU Qiao-Quan1,*   

  1. 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China; 2 National Center of Quality Supervision and Inspection for Toilet Articles, Jiangsu Province, Yangzhou 225009, China
  • Received:2011-06-10 Revised:2011-09-14 Published:2012-01-12 Published online:2011-11-07
  • Contact: 刘巧泉, E-mail: qqliu@yzu.edu.cn

摘要: 维生素E是人与动物必须从食物中摄取的微量营养元素之一,根据侧链的饱和度可将其分为生育酚和三烯生育酚,水稻种子中均含二者。本研究利用反相高效液相色谱法测定了18份籼稻和16份粳稻品种糙米中维生素E各异构体的含量。结果表明,种子中各异构体的含量在籼稻与粳稻间存在显著差异,粳稻种子中的生育酚和维生素E含量一般要高于籼稻;籼稻种子中三烯生育酚与生育酚的比值(1.61)极显著高于粳稻(0.95),籼稻中以γ-三烯生育酚为主,而粳稻中主要含α-生育酚。水稻种子中同种类型异构体(即α-型间或γ-型间)含量间具有显著正相关,但γ-型与α-型异构体间呈显著负相关。这些数据为进一步研究水稻种子中维生素E的代谢调控和营养品质改良提供了有益的表型数据。

关键词: 水稻, 维生素E, 生育酚, 三烯生育酚, 高效液相色谱

Abstract: Vitamin E, including of tocotrienols and tocopherols, is one of miner nutrients that must be acquired regularly from dietary sources. The structure of tocotrienols differs from that of tocopherols by the presence of three trans-double bonds in the hydrocarbon chain. In this study, a reverse-phase HPLC method was used to simultaneously measure the contents of either tocopherols or tocotrienols in the brown rice, and their contents were compared among 18 indica and 16 japonica cultivars. The results showed that the contents of these vitamin E isomers were extremely different between indica and japonica rice, and the mean content of total tocopherol or vitamin E was significantly higher (P<0.01) in japonica rice than in indica rice, while the total tocotrienol content showed no differences between them. The principal isomer of vitamin E was also different between the two subspecies, for example, γ-tocotrienol was the predominant compound in indica rice, on the contrary, in japonica rice, the most abundant isomer was α-tocopherol. The ratio of total tocotrienols to tocopherols was also significantly higher (P<0.01) in indica (1.61) than in japonica rice (0.95). Pearson’s correlation analysis demonstrated that α-tocopherol content was positively correlated with α-tocotrienol content in rice. The same relationship was also presented between the contents of γ-tocopherol and γ-tocotrienol, but there was a negative correlation between contents of α- and γ-isomers. Taking together, all the present results provide some useful information for research on vitamin E metabolism or nutritional improvement in rice.

Key words: Oryza sativa L., Vitamin E, Tocopherol, Tocotrienol, HPLC

[1]Drevon C A. Absorption, transport and metabolism of vitamin E. Free Radic Res Commun, 1991, 14: 229–246
[2]McIntyre B S, Briski K P, Gapor A, Sylvester P W. Antiproliferative and apoptotic effects of tocopherols and tocotrienols on preneo-plastic and neoplastic mouse mammary epithelial cells. Proc Soc Exp Biol Med, 2000, 224: 292–301
[3]Khanna S, Roy S, Slivka A, Craft T K S, Chaki S, Rink C, Notestine M A, Notestine A C, Parinandi N L, Sen C K. Neuropmteetive properties of the natural vitamin E alpha-tocotrienol. Am Heart Assoc, 2005, 36: 144–152
[4]Parker R A, Pearce B C, Clark R W, Gordon D A, Wright J J. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem, 1993, 268: 11230–11238
[5]Yu W. Simmons-Menchaca M, Gapor A, Sanders B G, Kline K. Induction of apoptosis in human breast cancer cells by tocopherols and tocotrienols. Nutr Cancer, 1999, 33: 26–32
[6]Das S, Lekli I, Das M, Szabo G., Varadi J, Juhasz B, Bak I, Nesaretam K, Tosaki A, Powell S R, Das D K. Cardioprotec-tion with palmoil tocotrienols: comparison of different isomers. Am J Physiol Heart Circ Physiol, 2008, 294: H970–H978
[7]Velasco L, Goffman F D, Pujadas-Salvà A J. Fatty acids and tocochromanols in seeds of Orobanche. Phytochemistry, 2000, 54: 295–300
[8]Hess K R, Zhang W, Baggerly K A, Stivers D N, Coombes K R. Microarrays: Handling the deluge of data and extracting reliable information. Trends Biotechnol, 2001, 19: 463–468
[9]Aitzetmüller K. Antioxidative effects of Carum seeds. J Am Oil Chem Soc, 1997, 74: 185
[10]Padley F B, Gunstone F D, Harwood J L. The Lipid Handbook, 2nd edn. London: Chapman & Hall, 1994. p 130
[11]Panfili G, Fratianni A, Irano M. Normal phase high-performance liquid chromatography method for the determination of tocopherols and tocotrienols in cereals. J Agric Food Chem, 2003, 51: 3940–3944
[12]Britz S J, Prasad P V V, Moreau R A, Allen L H, Kremer D F, Boote K J. Influence of growth temperature on the amounts of tocopherols, tocotrienols, and γ-Oryzanol in brown rice. J Agric Food Chem, 2007, 55: 7559–7565
[13]Heinemann R J B, Xu Z, Godber J S, Lanfer-Marquez1 U M. Tocopherols, tocotrienols, and γ-oryzanol contents in japonica and indica subspecies of rice (Oryza sativa L.) cultivated in brazil. Cereal Chem, 2008, 85: 243–247
[14]Shin T, Godber J S, Martin D E, Wells J H. Hydrolytic stability and changes in E vitamers and oryzanol of extruded rice bran during storage. J Food Sci, 1997, 62: 704–708
[15]Sookwong P, Murata K, Nakagawa K, Shibata A, Kimura T, Yamaguchi M, Kojima Y, Miyazawa T. Cross-fertilization for enhancing tocotrienol biosynthesis in rice plants and QTL analysis of their F2 progenies. J Agric Food Chem, 2009, 57: 4620–4625
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!