作物学报 ›› 2012, Vol. 38 ›› Issue (03): 471-478.doi: 10.3724/SP.J.1006.2012.00471
刘莉铭1,2,3,刘红彦1,2,3,*,田保明1
LIU Li-Ming1,2,3,LIU Hong-Yan1,2,3,*,TIAN Bao-Ming1
摘要: 用CodeHop方法设计简并引物克隆得到了GAPDH、β-actin、α-tubulin、UBQ5、RPL4、eIF4A和eEF1α 7个看家基因的部分序列,将这7个基因和GenBank中已公布的18S rRNA、NADHD 2个基因共9个基因作为候选内参基因,利用实时荧光定量PCR技术,分析其在茎点枯病菌诱导下芝麻中的表达稳定性。经BestKeeper、NormFinder和GeNorm软件分析可知,UBQ5、eIF4A、α-tubulin 3个基因表达均较稳定,eEF1α变化最大。当使用多基因作为内参基因时,选择这3个最稳定的候选内参基因即可准确矫正定量结果。
[1]Guo Y(郭杨), Chen S-J(陈世界), Guo W-Z(郭万柱), Li J(李璟). Advance in fluorescent quantitative PCR and its applications. Prog Vet Med (动物医学进展), 2009, 30(2): 78–82 (in Chinese with English abstract)[2]Suzuki T, Higgins P J, Crawford D. Control selection for RNA quantitation. Biotechniques, 2000, 29: 332–337[3]Sun M-L(孙美莲), Wang Y-S(王云生), Yang D-Q(杨冬青), Wei C-L(韦朝领), Gao L-P(高丽萍), Xia T(夏涛), Shan Y(单育), Luo Y(骆洋). Reference genes for real-time fluorescence quantitative PCR in Camellia sinensis. Chin Bull Bot (植物学报), 2010, 45(5): 579–587 (in Chinese with English abstract)[4]Barsalobres-Cavallari C F, Severino F E, Maluf M P, Maia I G. Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol, 2009, 10: 1–10[5]Jain M, Nijhawan A, Tyagi A K, Khurana J P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun, 2006, 345: 646–651[6]Luo H, Chen S, Wan H, Chen F, Gu C, Liu Z. Candidate reference genes for gene expression studies in water lily. Anal Biochem, 2010, 404: 100–102[7]Maroufi A, Van B E, De L M. Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol, 2010, 11: 1–12[8]Li Q-F(李钱峰), Jiang M-Y(蒋美艳), Yu H-X(于恒秀), Xin S-W(辛世文), Gu M-H(顾铭洪), Liu Q-Q(刘巧泉). Selection of internal reference genes for quantitative RT-PCR analysis of total RNA from endosperm of rice (Oryza sativa L.). J Yangzhou Univ (Agric Life Sci Edn) (扬州大学学报?农业与生命科学版), 2008, 29(2): 61–66 (in Chinese with English abstract)[9]Nicot N, Hausman J F, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot, 2005, 56: 2907–2914 [10]Andersen C L, Jensen J L, Ørntoft T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res, 2004, 64: 5245–5250[11]Xie T-D(谢天丁), Pei G-Y(裴桂英), Liu B-C(刘保才), Ma S-F(马赛飞), Liu J(刘健). Control effect experiment of Sesame Fusarium Wilt and Stem Blight. J Hebei Agric Sci (河北农业科学), 2010, 14(4): 60–61 (in Chinese with English abstract)[12]Huang J(黄菁), Wang S-L(王少丽), Qiao C-L(乔传令). Automated programming of degenerate primers and the cloning of the diamondback esterase gene. Entomolog Knowl (昆虫知识), 2002, 39(6): 458–461 (in Chinese with English abstract)[13]Rose T M, Schultz E R, Henikoff J G, Pietrokovski S, McCallum C M, Henikoff S. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucl Acids Res, 1998, 26: 1628–1635[14]Rose T M, Henikoff J G, Henikoff S. CODEHOP (consensus-degenerate hybrid oligonucleotide primer) PCR primer design. Nucl Acids Res, 2003, 31: 3763–3766[15]Yu H-S(于寒松), Zhang J-X(张继星), Li Y-F(李彦舫), Ma L-Q(马兰青), Hu Y-H(胡耀辉). Full-length cDNA cloning of glycosyltransferase family from Rhodiola sachalinensis. Food Sci (食品科学), 2010, 31(21): 244–247 (in Chinese with English abstract)[16]Chen C-F(陈彩芳), Wen H-S(温海深), He F(何峰), Dong S-L(董双林). Programming design of degenerate primers and cloning half-smooth tongue sole cynoglossus semila evis CYP17 gene. Period Ocean Univ China (中国海洋学报), 2009, 39(6): 1213–1218 (in Chinese with English abstract)[17]Provencher C, Lapointe G, Sirois S, Vancalsteren M R, Roy D. Consensus-degenerate hybrid oligonucleotide primers for ampli?cation of priming glycosyl transferase genes of the exopolysaccharide locus in strains of the Lactobacillus casei group. Appl Environ Microbiol, 2003, 69: 3299–3307[18]Lindqvist N, Lönngren U, Agudo M, Näpänkangas U, Vidal-Sanz M, Hallböök F. Multiple receptor tyrosine kinases are expressed in adult rat retinal ganglion cells as revealed by single-cell degenerate primer polymerase chain reaction. Ups J Med Sci, 2010, 115: 65–80[19]Hu R-B(胡瑞波), Fan C-M(范成明), Fu Y-F(傅永福). Reference gene selection in plant real-time quantitative reverse transcription PCR (qRT-PCR). J Agric Sci Technol (中国农业科技导报), 2009, 11(6): 30–36 (in Chinese with English abstract)[20]Dong X-L(董晓丽), Wang J-Q(王加启), Bu D-P(卜登攀), Zhang C-L(张春林), Li S-S(李珊珊), Zhao G-Q(赵国琦). Research advancement of reference gene in the fluorescent quantitative PCR and its application. China Animal Husb Vet Med (中国畜牧兽医), 2009, 36(9): 83–85 (in Chinese)[21]Lee P D, Sladek R, Greenwood C M T, Hudson T J. Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res, 2002, 12: 292–297 [22]Pfaffl M W, Tichopad A, Prgomet C, Neuvians T P. Determination of stable housekeeping genes, differentially regulated tar-get genes and sample integrity: bestkeeper-excel-based tool using pair-wise correlations. Biotechnol Lett, 2004, 26: 509–515[23]Vandesompele J, De P K, Pattyn F, Poppe B, Van R N, De P A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002, 3: 1–13[24]Akilesh S, Shafer D J, Roopenian D. Customized molecular phenotyping by quantitative gene expression and pattern recognition analysis. Genome Res, 2003, 13: 1719–1727[25]Brunner A M, Yakovlev I A, Strauss S H. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol, 2004, 4: 1–7[26]Wu W-K(吴文凯), Liu C-Q(刘成前), Zhou Z-G(周志刚), Lu S(卢山). The selection of reference genes in Chlamydomonas reinhardtii P A dangeard by real-time quantitative PCR. Plant Physiol Commun (植物生理学通讯), 2009, 45(7): 667–672 (in Chinese with English abstract)[27]Li M(李梅), Guo J-H(郭建华), Liu X-D(刘学东), Lü Y-C(吕彦超), Wang W-Y(王文艳). Comparison of inoculation method for anthracnose resistance in bean seedling. Tianjing Agric Sci (天津农业科学), 2009, 15(1): 31–32 (in Chinese with English abstract) |
[1] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[2] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[3] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[4] | 杨文娟,张艳欣,王林海,魏鑫,黎冬华,高媛,刘盼,张秀荣. 一个芝麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2018, 44(7): 1010-1020. |
[5] | 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863. |
[6] | 吴坤,吴文雄,杨敏敏,刘红艳,郝国存,赵应忠. 白芝麻籽粒油脂、蛋白质及芝麻素含量QTL定位分析[J]. 作物学报, 2017, 43(07): 1003-1011. |
[7] | 苏适,李瑞航,郎丹莹,张柯,郝小虎,刘研,王军卫,徐虹. 芝麻叶腺毛显微结构及干旱条件下腺毛分泌物的变化[J]. 作物学报, 2016, 42(02): 278-294. |
[8] | 吕高强,吴向阳,王心宇. 芝麻中一个富含脯氨酸新基因的克隆与特征分析[J]. 作物学报, 2015, 41(12): 1810-1818. |
[9] | 黎冬华,刘文萍,张艳欣,王林海,危文亮,高媛,丁霞,王蕾,张秀荣. 芝麻耐旱性的鉴定方法及关联分析[J]. 作物学报, 2013, 39(08): 1425-1433. |
[10] | 岳文娣,魏利斌,张体德,李春,苗红梅,张海洋. 芝麻种质资源SSR标记遗传多样性与群体结构[J]. 作物学报, 2012, 38(12): 2286-2296. |
[11] | 刘红艳,吴坤,杨敏敏,左阳,赵应忠. 国家芝麻区域试验新品种(系)的DNA指纹分析[J]. 作物学报, 2012, 38(04): 596-605. |
[12] | 张岗,董艳玲,夏宁,张毅,王晓杰,屈志鹏,李依民,黄丽丽,康振生. 利用cDNA-AFLP技术分析小麦成株抗条锈性差异基因表达特征[J]. 作物学报, 2010, 36(3): 401-409. |
[13] | 车卓,张艳欣,孙建,张秀荣,尚勋武,王化俊. 应用SRAP标记分析黑芝麻核心种质遗传多样性[J]. 作物学报, 2009, 35(10): 1936-1941. |
[14] | 魏利斌;张海洋;郑永战;郭旺珍;张天真. 芝麻EST-SSR标记的开发和初步研究[J]. 作物学报, 2008, 34(12): 2077-2084. |
[15] | 杨晓丽;张海洋;郭旺珍;郑永战;苗红梅;魏利斌;张天真. 芝麻核雄性不育系ms86-1小孢子败育过程的超微结构[J]. 作物学报, 2008, 34(11): 1894-1900. |
|