作物学报 ›› 2012, Vol. 38 ›› Issue (03): 479-486.doi: 10.3724/SP.J.1006.2012.00479
孙健,岳瑞雪,钮福祥,徐飞,朱红
SUN Jian,YUE Rui-Xue,NIU Fu-Xiang,XU Fei,ZHU Hong
摘要: 以15个淀粉型甘薯品种为试验材料,测定其直链淀粉含量、糊化特性和乙醇发酵特性,并分析它们之间的差异和相互关系。结果表明,不同甘薯品种的干物率、淀粉含量和直链淀粉含量(AC)均存在较大差异,相关分析表明,AC与干物率、淀粉含量之间呈极显著正相关;不同品种甘薯的糊化特性之间存在一定差异,但RVA谱特征值之间关系密切;不同甘薯品种的乙醇发酵特性之间也存在较大差异,乙醇含量与发酵强度之间呈极显著正相关。进一步分析表明,AC与RVA各特征值之间相关性不显著,而干物率、淀粉含量与糊化温度(PT)均呈极显著正相关(相关系数分别为r=0.661, P<0.01; r=0.670, P<0.01);AC与乙醇含量、发酵强度之间有显著正相关关系(相关系数分别为r=0.653, P<0.01; r=0.698, P<0.01),但与发酵效率、发酵黏度的相关性不显著;发酵黏度与崩解值(BDV)呈显著负相关(r= –0.563, P<0.05),与消减值(SBV)显著正相关(r=0.639, P<0.05),而乙醇含量、发酵效率和发酵强度与淀粉RVA各特征值之间的相关性均不显著。聚类分析将15个品种分为3大类,第I类品种AC和BDV均较高,第II类品种的AC最高、BDV最低,而第III类品种AC最低、BDV最高。甘薯的AC和BDV可以作为评价甘薯乙醇发酵特性的指标,同时较高AC和BDV值应是燃料乙醇专用甘薯品种的选育方向。
[1]Ma D F, Li H M, Tang J, Xie Y P, Li Q, Cao Q H, Zhang Y G, Zhang A J. Current status and future prospects of development of sweet potato industry in China. In: Ma D F ed. Sweetpotato in Food and Energy Security. Beijing: China Agricultural University Press, 2010. pp 3–9[2]Fu Y-F(傅玉凡), Liang Y-Y(梁媛媛), Sun F-N(孙富年), Li M(李明), Leng J-C(冷晋川), Zhang Q-T(张启堂), He P(何平). Variations of starch content in storage roots of sweetpotato during their development. J Southwest Univ (西南大学学报), 2008, 30(4): 56–60 (in Chinese with English abstract)[3]Huang H-H(黄华宏), Lu G-Q(陆国权), Zheng Y-F(郑遗凡). Variation in root starch gelatinization characteristics during the growth and development of sweetpotato. Sci Agric Sin (中国农业科学), 2005, 38(3): 462–467 (in Chinese with English abstract)[4]Yang X-R(杨晓蓉), Li X(李歆), Ling J-Y(凌家煜). Differences among rice categories in pasting characteristics and amylose content. J Chin Cereals Oils Assoc (中国粮油学报), 2001, 16(6): 37–40 (in Chinese with English abstract)[5]Liu H(刘辉), Zhang M(张敏). Relationships between amylose content and gelatinization characteristics of different varieties of millet. Food Sci (食品科学), 2010, 31(15): 31–33 (in Chinese with English abstract)[6]Varavinit S, Shobsngob S, Varanyanond W. Effeet of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of thai rice. Starch/Staerke, 2003, 55: 410–415[7]Zhou X-L(周小理), Xiao W-Y(肖文艳), Zhou Y-M(周一鸣). Study on relationship between pasting properties and amylose content of different buckwheat varieties. Food Sci (食品科学), 2008, 29(11): 37–40 (in Chinese with English abstract)[8]Wu X, Zhao R, Wang D. Effects of amylose, corn protein, and corn fiber contents on production of ethanol from starch-rich media. Cereal Chem, 2006, 83: 569–575 [9]Zhang Y-G(张允刚), Fang B-P(房伯平). Descriptors and Data Standard for Sweetpotato (甘薯种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006. pp 83–84 (in Chinese)[10]Kitahara K, Ooi Y, Mizukami S, Suganuma T, Nagahama T. Physicochemical properties of starches from sweet potato cultivars. J Appl Glycosci, 1996, 43: 59–66[11]Mcleary B V, Solah V, Gibson T S. Quantitative measurement of total starch in cereal flours and products. J Cereal Sci, 1994, 20: 51–58[12]Standards of Ministry of Agriculture, the People's Republic of China (中华人民共和国农业部标准). Measuring Methods of Rice Quality Characteristics (米质测定方法). Beijing: China Standards Press, 1988 (in Chinese)[13]Tang Z-H(唐忠厚), Li H-M(李洪民), Zhang A-J(张爱君), Shi X-M(史新敏), Sun J(孙健), Zhu H(朱红), Xu F(徐飞). Effects of long-term phosphorus fertilization on quality and starch RVA characters in sweetpotato. Plant Nutr Fert Sci (植物营养与肥料学报), 2011, 17(2): 391–396 (in Chinese with English abstract)[14]Jin Y-L(靳艳玲), Gan M-Z(甘明哲), Zhou L-L(周玲玲), Xue H-L(薛慧玲), Zhang L(张良), Zhao H(赵海). Ethanol production with 4 varieties of sweet potato at different growth stages. Chin J Appl Environ Biol (应用与环境生物学报), 2009, 15(2): 267–270 (in Chinese with English abstract)[15]Liu Y(刘艳), Zhao H(赵海), Qi T-S(戚天胜), Tang Q-L(唐秋琳), Huang Y-F(黄宇峰). Fast production of ethanol by Zymomonas mobilis (Zy-1). Chin J Appl Environ Biol (应用与环境生物学报), 2007, 13(1): 69–72 (in Chinese with English abstract)[16]Wang F Z, Shen W, Rao Z M. Construction of a flocculating yeast for fuel ethanol production. Biotechnol Lett, 2008, 30: 97–102[17]Lu G-Q(陆国权), Tang Z-H(唐忠厚), Huang H-H(黄华宏). Genotype variation in amylose content and starch pasting properties of sweetpotato storage at two K levels. Acta Agric Zhejiangensis (浙江农业学报), 2005, 17(5): 280–283 (in Chinese with English abstract) [18]Zhang L(张莉), Li Z-X(李志西), Mao J-Y(毛加银). Rheology of chestnut starch paste. Acta Univ Agric Bor-occid (西北农业学报), 2001, 10(3): 90–92 (in Chinese with English abstract)[19]Cooke D, Gidley M J. Loss of crystalline and molecular order during starch gelatinization origin of the enthalpic transition. Carbohydr Res, 1992, 227: l03–ll2 [20]Ramesh M, Ali S Z, Bhattacharya K R. Structure of rice starch and itsrelation to cooked-rice texture. Carbohydr Polym, 1999, 38: 337–347[21]Liang L-S(梁丽松), Xu J(徐娟), Wang G-X(王贵禧), Ma H-L(马惠铃). Relationship between starch pasting, amylose content and starch granule size in different Chinese chestnut variety groups. Sci Agric Sin (中国农业科学), 2009, 42(1): 251–260 (in Chinese with English abstract)[22]Zhang K(张凯), Li X-H(李新华), Zhao Q-C(赵前程), Li N-J(李乃洁), Yang X-L(杨晓丽). Study and comparison on gelatilization characteristics of starches from different msize varieties. J Shenyang Agric Univ (沈阳农业大学学报), 2005, 36(1): 107–109 (in Chinese with English abstract)[23]Zhang Y-X(张艳霞), Ding Y-F(丁艳锋), Li G-H(李刚华), Wang Q-S(王强盛), Huang P-S(黄丕生), Wang S-H(王绍华). Starch structure and paste property of rice with different amylose content. Acta Agron Sin (作物学报), 2007, 33(7): 1201–1205 (in Chinese with English abstract)[24]Lii C Y, TsaiM L, Tseng K H. Effect of amylose content on the rheological property of rice starch. Cereal Chem, 1996, 73(4): 415–420[25]Toyokawa H, Rubenthaler G L, Powers J R, Schanus E G. Japanese noodle qualities: II. Starch components. Cereal Chem, 1989, 66(5): 387–391[26]Hideho M, Sachiko T. Endosperm starch propetties in several wheat cultivars preferred for Japanese noodles. Euphytica, 1994, 72: 171–175[27]Oda M, Yasuda Y, Okazaki S, Yamauchi Y, Yokoyama Y. A method of flour quality assessment for Japanese noodles. Cereal Chem, 1980, 57: 253–254[28]Konik C M, Miskelly D M, Gras P W. Starch swelling power, grain hardness and protein: relationship to sensory properties of Japanese noodles. Starch/Staerke, 1993, 45: 139–144[29]Collado L S, Corke H. Properties of starch noodles as affected by sweetpotato genotype. Cereal Chem, 1997, 74: 182–187[30]Gao J-H(高锦合), Liang Y-C(梁于朝), Song F-P(宋付平), Li K-M(李开绵). Alcoholic fermentation of cassava of different varieties. Chin J Trop Crops (热带作物学报), 2009, 30(2): 215–218 (in Chinese with English abstract)[31]Song G-Y(宋高友), Zhang C-S(张纯慎), Su Y-M(苏益民), Liao M-D(廖美丹), Bai C-P(白昌平). Effects of sorghum grain quality on alcohol yield. Liaoning Agric Sci (辽宁农业科学), 1986, (5): 6–9 (in Chinese with English abstract)[32]Liimatainen H, Kuokkanen T, Kriinen J. Development of bioethanol production from waste potatoes. In: PongrÀcz E ed. Proceedings of the Waste Minimization and Resources Use Optimization conference. Finland Oulu: Oulu University Press, 2004. pp 123–129 [33]Sun J(孙健), Zhang C-Y(张翠英), Li H-M(李洪民), Zhang A-J(张爱君), Tang Z-H(唐忠厚). Multivariate regression analysis on ethanol yield and quality traits of fresh sweetpotato. J Chin Cereals Oils Assoc (中国粮油学报), 2010, 25(7): 49–53 (in Chinese with English abstract) |
[1] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[2] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[3] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
[4] | 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459. |
[5] | 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550. |
[6] | 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580. |
[7] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[8] | 杨帆, 钟晓媛, 李秋萍, 李书先, 李武, 周涛, 李博, 袁玉洁, 邓飞, 陈勇, 任万军. 再生稻次适宜区迟播栽对不同杂交籼稻淀粉RVA谱的影响[J]. 作物学报, 2021, 47(4): 701-713. |
[9] | 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319. |
[10] | 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162. |
[11] | 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207. |
[12] | 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及Wx和OsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888. |
[13] | 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471. |
[14] | 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869. |
[15] | 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658. |
|