欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (03): 479-486.doi: 10.3724/SP.J.1006.2012.00479

• 耕作栽培·生理生化 • 上一篇    下一篇

淀粉型甘薯品种直链淀粉含量、糊化特性和乙醇发酵特性的关系

孙健,岳瑞雪,钮福祥,徐飞,朱红   

  1. 中国农业科学院甘薯研究所 / 江苏徐州甘薯研究中心,江苏徐州, 221121
  • 收稿日期:2011-08-24 修回日期:2011-12-15 出版日期:2012-03-12 网络出版日期:2012-01-04
  • 通讯作者: 钮福祥, E-mail: niufuxiang@sina.com, Tel: 0516-82028151
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项资金项目(CARS-11-B-20)和徐州市科技计划项目(XJ11B005)资助。

Relationship among Amylose Content, Starch Pasting and Ethanol Fermentation in Sweetpotato Varieties for Starch Use

SUN Jian,YUE Rui-Xue,NIU Fu-Xiang,XU Fei,ZHU Hong   

  1. Institute of Sweetpotato, Chinese Academy of Agricultural Sciences / Xuzhou Sweetpotato Research Centre of Jiangsu Province, Xuzhou 221121, China
  • Received:2011-08-24 Revised:2011-12-15 Published:2012-03-12 Published online:2012-01-04
  • Contact: 钮福祥, E-mail: niufuxiang@sina.com, Tel: 0516-82028151

摘要: 15个淀粉型甘薯品种为试验材料,测定其直链淀粉含量、糊化特性和乙醇发酵特性,并分析它们之间的差异和相互关系。结果表明,不同甘薯品种的干物率、淀粉含量和直链淀粉含量(AC)均存在较大差异,相关分析表明,AC与干物率、淀粉含量之间呈极显著正相关;不同品种甘薯的糊化特性之间存在一定差异,但RVA谱特征值之间关系密切;不同甘薯品种的乙醇发酵特性之间也存在较大差异,乙醇含量与发酵强度之间呈极显著正相关。进一步分析表明,AC与RVA各特征值之间相关性不显著,而干物率、淀粉含量与糊化温度(PT)均呈极显著正相关(相关系数分别为r=0.661, P<0.01; r=0.670, P<0.01);AC与乙醇含量、发酵强度之间有显著正相关关系(相关系数分别为r=0.653, P<0.01; r=0.698, P<0.01),但与发酵效率、发酵黏度的相关性不显著;发酵黏度与崩解值(BDV)呈显著负相关(r= –0.563, P<0.05),与消减值(SBV)显著正相关(r=0.639, P<0.05),而乙醇含量、发酵效率和发酵强度与淀粉RVA各特征值之间的相关性均不显著。聚类分析将15个品种分为3大类,第I类品种AC和BDV均较高,第II类品种的AC最高、BDV最低,而第III类品种AC最低、BDV最高。甘薯的AC和BDV可以作为评价甘薯乙醇发酵特性的指标,同时较高AC和BDV值应是燃料乙醇专用甘薯品种的选育方向。

关键词: 甘薯, 直链淀粉, 糊化特性, 乙醇发酵, RVA

Abstract: Fifteen starch-based sweetpotato varieties were used to test amylose contents (AC), starch pasting properties and ethanol fermentation characteristics, and analyze the difference and relationship among them. The results indicated that there were significant differences among dry matter content, starch content and AC of different sweetpotato varieties, and AC was significantly correlated to dry matter content and starch content. Differences presented among pasting properties in different varieties of sweetpotato, and the relationship among RVA eigenvalues was close. There were significant differences among ethanol fermentation characteristics of different sweetpotato varieties, and ethanol content was significantly correlated to fermentative strength. There were no significant correlation between AC and RVA eigenvalues, but pasting temperature (PT) was positively correlated to dry matter content (r=0.661, P<0.01) and starch content (r=0.670, P<0.01). AC was positively correlated to ethanol content (r=0.653, P<0.01) and fermentative strength (r=0.698, P<0.01), but not significantly correlated to fermentation efficiency and fermented mash viscosity. Fermented mash viscosity was negatively correlated to breakdown (BDV) (r= –0.563, P<0.05) and positively correlated to setback (SBV) (r=0.639, P<0.05), but ethanol content, fermentation efficiency and fermentative strength were not significantly correlated to RVA eigenvalues. The cluster analysis showed that 15 varieties were divided into three parts: the first part featured higher AC and BDV, the second part had highest AC and lowest BDV, and the third part had lowest AC and highest BDV. Consequently, AC and BDV could be used as the indexes to evaluate the ethanol fermentation characteristics of sweetpotato, and the sweetpotato with higher AC and BDV was the breeding targets for fuel ethanol.

Key words: Sweetpotato, Amylose, Pasting property Ethanol fermentation, RVA

[1]Ma D F, Li H M, Tang J, Xie Y P, Li Q, Cao Q H, Zhang Y G, Zhang A J. Current status and future prospects of development of sweet potato industry in China. In: Ma D F ed. Sweetpotato in Food and Energy Security. Beijing: China Agricultural University Press, 2010. pp 3–9

[2]Fu Y-F(傅玉凡), Liang Y-Y(梁媛媛), Sun F-N(孙富年), Li M(李明), Leng J-C(冷晋川), Zhang Q-T(张启堂), He P(何平). Variations of starch content in storage roots of sweetpotato during their development. J Southwest Univ (西南大学学报), 2008, 30(4): 56–60 (in Chinese with English abstract)

[3]Huang H-H(黄华宏), Lu G-Q(陆国权), Zheng Y-F(郑遗凡). Variation in root starch gelatinization characteristics during the growth and development of sweetpotato. Sci Agric Sin (中国农业科学), 2005, 38(3): 462–467 (in Chinese with English abstract)

[4]Yang X-R(杨晓蓉), Li X(李歆), Ling J-Y(凌家煜). Differences among rice categories in pasting characteristics and amylose content. J Chin Cereals Oils Assoc (中国粮油学报), 2001, 16(6): 37–40 (in Chinese with English abstract)

[5]Liu H(刘辉), Zhang M(张敏). Relationships between amylose content and gelatinization characteristics of different varieties of millet. Food Sci (食品科学), 2010, 31(15): 31–33 (in Chinese with English abstract)

[6]Varavinit S, Shobsngob S, Varanyanond W. Effeet of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of thai rice. Starch/Staerke, 2003, 55: 410–415

[7]Zhou X-L(周小理), Xiao W-Y(肖文艳), Zhou Y-M(周一鸣). Study on relationship between pasting properties and amylose content of different buckwheat varieties. Food Sci (食品科学), 2008, 29(11): 37–40 (in Chinese with English abstract)

[8]Wu X, Zhao R, Wang D. Effects of amylose, corn protein, and corn fiber contents on production of ethanol from starch-rich media. Cereal Chem, 2006, 83: 569–575

[9]Zhang Y-G(张允刚), Fang B-P(房伯平). Descriptors and Data Standard for Sweetpotato (甘薯种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006. pp 83–84 (in Chinese)

[10]Kitahara K, Ooi Y, Mizukami S, Suganuma T, Nagahama T. Physicochemical properties of starches from sweet potato cultivars. J Appl Glycosci, 1996, 43: 59–66

[11]Mcleary B V, Solah V, Gibson T S. Quantitative measurement of total starch in cereal flours and products. J Cereal Sci, 1994, 20: 51–58

[12]Standards of Ministry of Agriculture, the People's Republic of China (中华人民共和国农业部标准). Measuring Methods of Rice Quality Characteristics (米质测定方法). Beijing: China Standards Press, 1988 (in Chinese)

[13]Tang Z-H(唐忠厚), Li H-M(李洪民), Zhang A-J(张爱君), Shi X-M(史新敏), Sun J(孙健), Zhu H(朱红), Xu F(徐飞). Effects of long-term phosphorus fertilization on quality and starch RVA characters in sweetpotato. Plant Nutr Fert Sci (植物营养与肥料学报), 2011, 17(2): 391–396 (in Chinese with English abstract)

[14]Jin Y-L(靳艳玲), Gan M-Z(甘明哲), Zhou L-L(周玲玲), Xue H-L(薛慧玲), Zhang L(张良), Zhao H(赵海). Ethanol production with 4 varieties of sweet potato at different growth stages. Chin J Appl Environ Biol (应用与环境生物学报), 2009, 15(2): 267–270 (in Chinese with English abstract)

[15]Liu Y(刘艳), Zhao H(赵海), Qi T-S(戚天胜), Tang Q-L(唐秋琳), Huang Y-F(黄宇峰). Fast production of ethanol by Zymomonas mobilis (Zy-1). Chin J Appl Environ Biol (应用与环境生物学报), 2007, 13(1): 69–72 (in Chinese with English abstract)

[16]Wang F Z, Shen W, Rao Z M. Construction of a flocculating yeast for fuel ethanol production. Biotechnol Lett, 2008, 30: 97–102

[17]Lu G-Q(陆国权), Tang Z-H(唐忠厚), Huang H-H(黄华宏). Genotype variation in amylose content and starch pasting properties of sweetpotato storage at two K levels. Acta Agric Zhejiangensis (浙江农业学报), 2005, 17(5): 280–283 (in Chinese with English abstract)

[18]Zhang L(张莉), Li Z-X(李志西), Mao J-Y(毛加银). Rheology of chestnut starch paste. Acta Univ Agric Bor-occid (西北农业学报), 2001, 10(3): 90–92 (in Chinese with English abstract)

[19]Cooke D, Gidley M J. Loss of crystalline and molecular order during starch gelatinization origin of the enthalpic transition. Carbohydr Res, 1992, 227: l03–ll2  

[20]Ramesh M, Ali S Z, Bhattacharya K R. Structure of rice starch and itsrelation to cooked-rice texture. Carbohydr Polym, 1999, 38: 337–347

[21]Liang L-S(梁丽松), Xu J(徐娟), Wang G-X(王贵禧), Ma H-L(马惠铃). Relationship between starch pasting, amylose content and starch granule size in different Chinese chestnut variety groups. Sci Agric Sin (中国农业科学), 2009, 42(1): 251–260 (in Chinese with English abstract)

[22]Zhang K(张凯), Li X-H(李新华), Zhao Q-C(赵前程), Li N-J(李乃洁), Yang X-L(杨晓丽). Study and comparison on gelatilization characteristics of starches from different msize varieties. J Shenyang Agric Univ (沈阳农业大学学报), 2005, 36(1): 107–109 (in Chinese with English abstract)

[23]Zhang Y-X(张艳霞), Ding Y-F(丁艳锋), Li G-H(李刚华), Wang Q-S(王强盛), Huang P-S(黄丕生), Wang S-H(王绍华). Starch structure and paste property of rice with different amylose content. Acta Agron Sin (作物学报), 2007, 33(7): 1201–1205 (in Chinese with English abstract)

[24]Lii C Y, TsaiM L, Tseng K H. Effect of amylose content on the rheological property of rice starch. Cereal Chem, 1996, 73(4): 415–420

[25]Toyokawa H, Rubenthaler G L, Powers J R, Schanus E G. Japanese noodle qualities: II. Starch components. Cereal Chem, 1989, 66(5): 387–391

[26]Hideho M, Sachiko T. Endosperm starch propetties in several wheat cultivars preferred for Japanese noodles. Euphytica, 1994, 72: 171–175

[27]Oda M, Yasuda Y, Okazaki S, Yamauchi Y, Yokoyama Y. A method of flour quality assessment for Japanese noodles. Cereal Chem, 1980, 57: 253–254

[28]Konik C M, Miskelly D M, Gras P W. Starch swelling power, grain hardness and protein: relationship to sensory properties of Japanese noodles. Starch/Staerke, 1993, 45: 139–144

[29]Collado L S, Corke H. Properties of starch noodles as affected by sweetpotato genotype. Cereal Chem, 1997, 74: 182–187

[30]Gao J-H(高锦合), Liang Y-C(梁于朝), Song F-P(宋付平), Li K-M(李开绵). Alcoholic fermentation of cassava of different varieties. Chin J Trop Crops (热带作物学报), 2009, 30(2): 215–218 (in Chinese with English abstract)

[31]Song G-Y(宋高友), Zhang C-S(张纯慎), Su Y-M(苏益民), Liao M-D(廖美丹), Bai C-P(白昌平). Effects of sorghum grain quality on alcohol yield. Liaoning Agric Sci (辽宁农业科学), 1986, (5): 6–9 (in Chinese with English abstract)

[32]Liimatainen H, Kuokkanen T, Kriinen J. Development of bioethanol production from waste potatoes. In: PongrÀcz E ed. Proceedings of the Waste Minimization and Resources Use Optimization conference. Finland Oulu: Oulu University Press, 2004. pp 123–129

[33]Sun J(孙健), Zhang C-Y(张翠英), Li H-M(李洪民), Zhang A-J(张爱君), Tang Z-H(唐忠厚). Multivariate regression analysis on ethanol yield and quality traits of fresh sweetpotato. J Chin Cereals Oils Assoc (中国粮油学报), 2010, 25(7): 49–53 (in Chinese with English abstract)
[1] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[2] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[3] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[4] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[5] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[6] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[7] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[8] 杨帆, 钟晓媛, 李秋萍, 李书先, 李武, 周涛, 李博, 袁玉洁, 邓飞, 陈勇, 任万军. 再生稻次适宜区迟播栽对不同杂交籼稻淀粉RVA谱的影响[J]. 作物学报, 2021, 47(4): 701-713.
[9] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[10] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[11] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[12] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[13] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[14] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[15] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!