欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (04): 589-595.doi: 10.3724/SP.J.1006.2012.00589

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

来自野生二粒小麦的抗白粉病基因PmAS846及其染色体定位和分子标记分析

薛飞1,王长有1,张丽华2,张宏1,李浩1,王亚娟1,刘新伦1,吉万全1,*   

  1. 1西北农林科技大学农学院 / 旱区作物逆境生物学国家重点实验室,陕西杨凌 712100;2 河南省内乡县种子技术推广站,河南内乡 474350
  • 收稿日期:2011-08-08 修回日期:2011-12-19 出版日期:2012-04-12 网络出版日期:2012-02-14
  • 通讯作者: 王长有, E-mail: chywang2004@126.com; 吉万全, E-mail: jiwanquan2003@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(31071409),国家高技术研究发展计划(863计划)项目(2011AA100103)和国家重点基础研究发展计划(973计划)项目(2009CB118300)资助。

Chromosome Location and Molecular Mapping of Powdery Mildew Resistance Gene PmAS846 Originated from Wild Emmer (Triticum turgidum var. dicoccoides)

XUE Fei1,WANG Chang-You1,ZHANG Li-Hua2,ZHANG Hong1,LI Hao1,WANG Ya-Juan1,LIU Xin-Lun1,JI Wan-Quan1,*   

  1. 1 College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; 2 Seed Technology Extension Station of Neixiang Country in Henan Province, Neixiang 474350, China
  • Received:2011-08-08 Revised:2011-12-19 Published:2012-04-12 Published online:2012-02-14
  • Contact: 王长有, E-mail: chywang2004@126.com; 吉万全, E-mail: jiwanquan2003@126.com

摘要: N9738是经抗性定向选择和农艺性状筛选所培育的抗白粉病普通小麦新种质,携带来自野生二粒小麦As846的抗白粉病基因PmAS846,在苗期和成株期高抗白粉菌生理小种E09和陕西关中地区流行菌系,本研究对该种质携带的抗白粉病基因进行了染色体定位和分子标记分析。对N9738和高感小麦白粉病的普通小麦品种辉县红杂交的F1、F2代分离群体和F2:3代家系进行白粉病抗性鉴定和遗传分析证实,N9738苗期抗性由1个显性抗白粉病基因控制,单(缺)体分析将该基因定位在小麦5B染色体上。采用位于5B染色体的分子标记结合集群分离分析法(BSA法)分析,筛选出与PmAS846连锁的11个SSR标记和2个EST-STS标记,PmAS846两翼的SSR标记Xgwp3191Xfcp1与该基因的遗传距离分别为7.3 cM和1.8 cM,EST-STS标记BF202652BF482522与该基因的遗传距离均为5.1 cM。根据该基因两翼SSR标记对中国春5B染色体缺失系(Bin系)的分析将其定位在5B染色体长臂0.75~0.76区域。研究结果PmAS846的分子标记辅助选择和精细定位奠定了基础。

关键词: 白粉病, 野生二粒小麦, 抗病基因, 染色体定位, 分子标记

Abstract: Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important diseases of wheat (Triticum aestivum L.) worldwide. Wheat relativesare important donors of resistance genes against this disease in wheat breeding program. The common wheat line N9738 is highly resistant to Bgt isolate E09 and Shaanxi prevailing races at both seedling and adult plant stages. The PmAS846 gene in line N9738 was derived from wild emmer (Triticum turgidum var. dicoccoides) accession As846. Genetic analysis of an F2 population and their F3 families, developed from the cross between N9738 and a susceptible common wheat cultivar Huixianhong, indicated that N9738 carries one dominant resistance gene. A set of common wheat nullisomic (monosomic) lines were used to analyze the chromosomal location of PmAS846. The results revealed that PmAS846 was located on wheat chromosome 5B. Microsatellite markers on wheat chromosome 5B were used to map the gene using bulked segregant analysis. Eleven microsatellite markers were used to construct a linkage map for the gene, and two markers, Xgpw3191 and Xfcp1, ?anking PmAS846 location at 7.3 and 1.8 cM, respectively. Amplification of 5B chromosome deletion lines of Chinese Spring with the flanking markers mapped PmAS846 on chromosome 5BL bin 0.75–0.76. Based on expressed sequence tags (ESTs) information mapped on chromosome 5BL bin 0.75–0.76, we identified EST-derived sequence tagged site (STS) markers BF202652 and BF482522 to be closely linked to PmAS846 with genetic distance of 5.1 cM both. These markers can be used in fine mapping of PmAS846 and marker-assisted selection.

Key words: Powdery mildew, Wild emmer, Resistance gene, Chromosome location, Molecular markers

[1]Huang X, Röder M S. Molecular mapping of powdery mildew resistance genes in wheat: A review. Euphytica, 2004, 137: 203-223

[2]Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H, Bjørnstad Å. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet, 2008, 116: 1155-1166

[3]Perugini L D, Murphy J P, Marshall D, Brown-Guedira G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet, 2008, 116: 417-425

[4]He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, Liu J. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet, 2009, 118: 1173-1180

[5]Ma H, Kong Z, Fu B, Li N, Zhang L, Jia H, Ma Z. Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet, 2011, 123: 1099-1106

[6]Hao Y, Liu A, Wang Y, Feng D, Gao J, Li X, Liu S, Wang H. Pm23: A new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet, 2008, 117: 1205-1212

[7]Xie W, Nevo E. Wild emmer. genetic resources, gene mapping and potential for wheat improvement. Euphytica, 2008, 164: 603-614

[8]Özkan H, Willcox G, Graner A, Salamini F, Kilian B. Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol, 2010, 58: 11-53

[9]Reader S M, Miller T E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica, 1991, 53: 57-60

[10]Rong J K, Millet E, Manisterski J, Feldman M. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP based mapping. Euphytica, 2000, 115: 121-126

[11]Liu Z, Sun Q, Ni Z, Nevo E, Yang T. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 2002, 123: 21-29

[12]Blanco A, Gadaleta A, Cenci A, Carluccio A V, Abdelbacki A M M, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet, 2008, 117: 135-142

[13]Li G, Fang T, Xie C, Yang T, Nevo E. Molecular characterization of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 2009, 119: 531-539

[14]Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q. 2009. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 119: 223-230

[15]Qi L L, Echalier B, Chao S, Lazo G R, Butler G E, Anderson O D, Akhunov E D, Dvorak J, Linkiewicz A M, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis C E, Greene R A, Kantety R, La Rota C M, Munkvold J D, Sorrells S F, Sorrells M E, Dilbirligi M, Sidhu D, Erayman M, Randhawa H S, Sandhu D, Bondareva S N, Gill K S, Mahmoud A A, Ma X F, Miftahudin, Gustafson J P, Conley E J, Nduati V, Gonzalez-Hernandez J L, Anderson J A, Peng J H, Lapitan N L V, Hossain K G, Kalavacharla V, Kianian S F, Pathan M S, Zhang D S, Nguyen H T, Choi D W, Fenton R D, Close T J, McGuire P E, Qualset C O, Gill B S. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics, 2004, 168: 701-712

[16]Qin B, Cao A, Wang H, Chen T, You F M, Liu Y, Ji J, Liu D, Chen P, Wang X E. Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet, 2011, 123: 207-218

[17]Wang C-Y(王长有) Ji W-Q(吉万全), Zhang G-S(张改生), Wang Q-Y(王秋英), Cai D-M(蔡东明), Xue X-Z(薛秀庄). SSR markers and preliminary chromosomal location of a powdery mildew resistance gene in common wheat germplasm N9134. Acta Agron Sin (作物学报), 2007, 33(1): 163-166 (in English with Chinese abstract)

[18]Sheng B-Q(盛宝钦). Scoring powdery mildew with infection type at wheat seedling stage. Plant Prot (植物保护), 1988, (1): 49 (in Chinese)

[19]Saari E E, Prescott J M. A scale for appraising the foliar intensity of wheat diseases. Plant Dis Rep, 1975, 59: 377-380

[20]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018

[21]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109:1105-1114

[22]Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M-Hln, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023

[23]Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract)

[24]Sears E R. The aneuploids of common wheat. Mol Agric Exp Stn Res Bull, 1954, 572: 1-58

[25]Hsam S L K, Lapochkina I F, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica, 2003, 133: 367-370

[26]Zeller F J, Kong L, Hartl L, Mohler V, Hsam S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 7. Gene Pm29 in line Pova. Euphytica, 2002, 123: 187-194

[27]Peusha H, Enno T, Priilinn O. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas, 2000, 132: 29-34

[28]Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of powdery mildew resistance genes in Chinese wheat (Triticum aestivum L. em. Thell.) landraces Xiaobaidong and Fuzhuang 30. Genet Breed, 2000, 54: 311-317

[29]Faris J, Anderson J, Francl L, Jordahl J. Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology, 1996, 86: 459-463

[30]Faris J D, Haen K M, Gill B S. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics, 2000, 154:823-835

[31]The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463: 763-768

[32]Linkiewicz A M, Qi L L, Gill B S, Ratnasiri A, Echalier B, Chao S, Lazo G R, Hummel D D, Anderson O D, Akhunov E D, Dvorak J, Pathan M S, Nguyen H T, Peng J H, Lapitan N L V, Miftahudin, Gustafson J P, La Rota C M, Sorrells M E, Hossain K G, Kalavacharla V, Kianian S F, Sandhu D, Bondareva S N, Gill K S, Conley E J, Anderson J A, Fenton R D, Close T J, McGuire P E, Qualset C O, Dubcovsky J. A 2500-locus bin map of wheat homoeologous group 5 provides insights on genedistribution and colinearity with rice. Genetics, 2004, 168: 665-676

[33]Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet, 2010, 121: 1613-1621
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[5] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[6] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[7] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[8] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[9] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[10] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[11] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[12] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[13] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[14] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[15] 李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(4): 513-519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!