欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (04): 691-698.doi: 10.3724/SP.J.1006.2012.00691

• 耕作栽培·生理生化 • 上一篇    下一篇

作物淀粉晶体结构的波谱分析

满建民1,蔡金文1,徐斌2,张奉民2,刘巧泉1,*,韦存虚1,*   

  1. 1 扬州大学教育部植物功能基因组学重点实验室/江苏省作物遗传生理重点实验室,江苏扬州 225009;2 扬州大学测试中心,江苏扬州 225009
  • 收稿日期:2011-08-29 修回日期:2011-12-19 出版日期:2012-04-12 网络出版日期:2012-02-13
  • 通讯作者: 刘巧泉, E-mail: qqliu@yzu.edu.cn; 韦存虚, E-mail: cxwei@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31071342),江苏省自然科学基金项目(BK2009186)和江苏省作物学优势学科项目资助。

Spectrum Analysis of Crystalline Structure of Crop Starches

MAN Jian-Min1,CAI Jin-Wen1,XU Bin2,ZHANG Feng-Min2,LIU Qiao-Quan1,*,WEI Cun-Xu1,*   

  1. 1 Key Laboratory of Plant Functional Genomics of the Ministry of Education / Key Laboratory of Crop Genetics and Physiology of the Jiangsu Province, Yangzhou University Yangzhou 225009, China; 2 Testing Center, Yangzhou University, Yangzhou 225009, China
  • Received:2011-08-29 Revised:2011-12-19 Published:2012-04-12 Published online:2012-02-13
  • Contact: 刘巧泉, E-mail: qqliu@yzu.edu.cn; 韦存虚, E-mail: cxwei@yzu.edu.cn

摘要: 作物淀粉有A-型、B-型和C-型晶体,本文利用粉末X-射线衍射仪(XRD)和固体核磁共振波谱仪(13C CP/MAS NMR)研究了不同植物来源淀粉的波谱特征和相对结晶度。结果表明,水稻、马铃薯和豌豆淀粉分别表现典型的A-型、B-型和C-型晶体XRD波谱,荸荠淀粉则表现CA-型XRD波谱,葛根淀粉为CB-型XRD波谱。以Jade 5.0分析软件峰拟合法和曲线作图法计算出来的淀粉XRD相对结晶度差别较大,且无相关性,以曲线作图法计算出来的相对结晶度可信度较高。不同来源淀粉的13C CP/MAS NMR波谱相似,有C1、C4、C2, 3, 5和C6区域,区别主要在C1区域,在该区域A-型糯玉米和普通玉米淀粉有3个结晶峰,B-型马铃薯淀粉有2个结晶峰,CA-型转基因高直链水稻(TRS)淀粉有3个不明显的结晶峰,而CB-型酸解TRS淀粉有2个结晶峰,无定形淀粉没有结晶峰。利用PeakFit 4.12峰拟合分析软件能够计算淀粉13C CP/MAS NMR波谱的相对结晶度和双螺旋含量,其中双螺旋含量比结晶度高,结晶度又比依据XRD波谱计算出来的结晶度高。上述研究结果为应用XRD和13C CP/MAS NMR波谱技术分析作物淀粉晶体结构提供了重要参考。

关键词: 淀粉, 晶体结构, 粉末X-射线衍射仪, 固体核磁共振波谱仪, 结晶度, 双螺旋含量

Abstract: Crop starches have A-type, B-type, and C-type crystallinity, and C-type crystallinity is the combination of both A-type and B-type crystallinity. In this paper, spectrum charateristics and relative crystallinity of starches from different plants were investigated with X-ray powder diffraction (XRD) and 13C cross-polarization magic-angle spinning nuclear magnetic resonance (13C CP/MAS NMR). The results indicated that rice, potato and pea starches showed typical A-type, B-type and C-type XRD spectra respectively. Water chestnut starch showed a CA-type XRD spectrum, which was a C-type closer to A-type. Kudzu starch showed a CB-type XRD spectrum, which was a C-type closer to B-type. The relative crystallinity of starch from XRD was obtained using the Jade 5.0 software and the curve mapping method. The results of two methods showed significant difference and had no correlation. The crystallinity with the curve mapping method was more reliable. The spectra of 13C CP/MAS NMR from different crop starches showed similar characteristics, and had four regions of C1, C4, C2, 3, 5 and C6, while the difference of the spectra among different starches was from C1 region. In C1 region, A-type starches of waxy and normal maize showed three peaks, B-type starch of potato showed two peaks, the transgenic resistant starch rice line (TRS) starch, which was a CA-type crystallinity, showed three inconspicuous peaks, the acid-modified TRS starch with CB-type crystalline showed two peaks and the amorphous starch had no peaks. The 13C CP/MAS NMR spectra were peak fitted by using the PeakFit 4.12 software. The relative crystallinity and the percentage of double helix content in starches were calculated. The double helix content was higher than the relative crystallinity. The crystallinity obtained from 13C CP/MAS NMR was higher than that from XRD. These results would be very useful for the application of XRD and 13C CP/MAS NMR to the analysis of crystalline structure of crop starches.

Key words: Starch, Crystalline structure, X-ray powder diffraction, Solid state nuclear magnetic resonance, Crystallinity, Double helix content

[1]Gallant D J, Bouchet B, Baldwin P M. Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym, 1997, 32: 177–191

[2]Cheetham N W H, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym, 1998, 36: 277-284

[3]Wei C X, Qin F L, Zhou W D, Yu H G, Xu B, Chen C, Zhu L J, Wang Y P, Gu M H, Liu Q Q. Granule structure and distribution of allomorphs in C-type high-amylose rice starch granule modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem, 2010, 58: 11946–11954

[4]Kang H J, Hwang I K, Kim K S, Choi H C. Comparative structure and physicochemical properties of Ilpumbyeo, a high-quality japonica rice, and its mutant, Suweon 464. J Agric Food Chem, 2003, 51: 6598–6603

[5]Nara S, Komiya T. Studies on the relationship between water-saturated state and crystallinity by the diffraction method for moistened potato starch. Starch, 1983, 35: 407–410

[6]Cheetham N W H, Tao L. Solid state NMR studies on the structural and conformational properties of natural maize starches. Carbohydr Polym, 1998, 36: 285–292

[7]Atichokudomchai N, Varavinit S, Chinachoti P. A study of ordered structure in acid-modified tapioca starch by 13C CP/MAS solid-state NMR. Carbohydr Polym, 2004, 58: 383–389

[8]Wei C X, Xu B, Qin F L, Yu H G, Chen C, Meng X L, Zhu L J, Wang Y P, Gu M H, Liu Q Q. C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem, 2010, 58: 7383–7388

[9]Bogracheva T Y, Wang Y L, Hedley C L. The effect of water content on the ordered/disordered structures in starches. Biopolymers, 2001, 58: 247–259

[10]Paris M, Bizot H, Emery J, Buzaré J Y, Buléon A. Crystallinity and structuring role of water in native and recrystallized starches by 13C CP-MAS NMR spectroscopy 1: spectral decomposition. Carbohydr Polym, 1999, 39: 327–339

[11]Yin Z-H(尹志华), Wang L(汪兰), Tain B-Q(田斌强), Wu J(吴佳), Xie B-J(谢笔钧). Physicochemical properties of Chinese water chestnut starch. J Chin Cereal Oil Assoc (中国粮油学报), 2008, 23: 66–70 (in Chinese with English abstract)

[12]Hung P V, Morita N. Chemical compositions, fine structure and physicochemical properties of kudzu (Pueraria labata) starches from different regions. Food Chem, 2007, 105: 749–755

[13]Wei C X, Qin F L, Zhu L J, Zhou W D, Chen Y F, Wang Y P, Gu M H, Liu Q Q. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem, 2010, 58: 1224–1232

[14]Sandhu K S, Lim S T. Structural characteristics and in vitro digestibility of Mango kernel starches (Mangifera indica L.). Food Chem, 2008, 107: 92–97

[15]Hughes T, Hoover R, Liu Q, Donner E, Chibbar R, Jaiswal S. Composition, morphology, molecular structure, and physicochemical properties of starches from newly released chickpea (Cicer arietinum L.) cultivars grown in Canada. Food Res Int, 2009, 42: 627–635

[16]Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA, 2009, 106: 21760–21765

[17]Wang S J, Y J L, Zhu Q H, Yu J G, Jin F M. Granule structure and allomorph position in C-type Chinese yam starch granule revealed by SEM, 13C CP/MAS NMR and XRD. Food Hydrocolloid, 2009, 23: 426–433

[18]Li Y(李玥), Zhong F(钟芳), Ma J-G(麻建国), Gu X-H(顾小红). Spectra analysis on rice starches from different varieties during pasting. Acta Polymer Sin (高分子学报), 2008, (7): 720–725 (in Chinese with English abstract)

[19]Wei C X, Qin F L, Zhou W D, Xu B, Chen C, Chen Y F, Wang Y P, Gu M H, Liu Q Q. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its its wild type during heating. Food Chem, 2011, 128: 645–652
[1] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[2] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[3] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[4] 杨帆, 钟晓媛, 李秋萍, 李书先, 李武, 周涛, 李博, 袁玉洁, 邓飞, 陈勇, 任万军. 再生稻次适宜区迟播栽对不同杂交籼稻淀粉RVA谱的影响[J]. 作物学报, 2021, 47(4): 701-713.
[5] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[6] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[7] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[8] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[9] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
[10] 鱼海跃,韩紫璇,张钰石,段留生,张明才,李召虎. 冠菌素对玉米籽粒灌浆特性与淀粉合成的调控效应[J]. 作物学报, 2019, 45(10): 1535-1543.
[11] 李莎莎,马耕,刘卫星,康娟,陈雨露,胡阳阳,张盼盼,王晨阳. 大田长期水氮处理对土壤氮素及小麦籽粒淀粉糊化特性的影响[J]. 作物学报, 2018, 44(7): 1067-1076.
[12] 李春燕,张雯霞,张玉雪,姚梦浩,丁锦峰,朱新开,郭文善,封超年. 小麦籽粒淀粉与面粉的理化特性差异[J]. 作物学报, 2018, 44(7): 1077-1085.
[13] 胡阳阳, 卢红芳, 刘卫星, 康娟, 马耕, 李莎莎, 褚莹莹, 王晨阳. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响[J]. 作物学报, 2018, 44(04): 591-600.
[14] 袁莉民, 展明飞, 章星传, 王志琴, 杨建昌. 水稻穗上不同粒位籽粒胚乳结构及其结实期灌溉方式对它的调控作用[J]. 作物学报, 2018, 44(02): 245-259.
[15] 何巍,范孝旭,王志峰,韦存虚. 小角X射线散射波谱的定量作图分析法在作物淀粉研究中的应用[J]. 作物学报, 2017, 43(12): 1827-1834.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!