欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 820-828.doi: 10.3724/SP.J.1006.2012.00820

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

运用关联分析定位栽培大豆蛋白11S、7S组分的相关基因位点

简爽1,2,文自翔1,李海朝1,袁道华1,李金英1,张辉1,叶永忠2,卢为国1,*   

  1. 1河南省农业科学院经济作物研究所 / 国家大豆改良中心郑州分中心 / 农业部黄淮海油料作物重点实验室,河南郑州 450002;2河南农业大学生命科学院,河南郑州 450002
  • 收稿日期:2011-08-22 修回日期:2012-01-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 卢为国, E-mail: 123bean@163.com, Tel: 0371-65733647
  • 基金资助:

    本研究由国家自然科学基金项目(30971818, 30771360), 河南省创新型科技人才队伍建设工程(094100510004)和郑州市创新型科技人才队伍建设工程(096SYJH14103)资助。

Identification of QTLs for Glycinin (11S) and β-Conglycinin (7S) Fractions of Seed Storage Protein in Soybean by Association Mapping

JIAN Shuang1,2,WEN Zi-Xiang1,LI Hai-Chao1,YUAN Dao-Hua1,LI Jin-Ying1,ZHANG Hui1,YE Yong-Zhong2,LU Wei-Guo1,*   

  1. 1 Institute of Industrial Crops, Henan Academy of Agricultural Sciences / National Subcenter for Soybean Improvement in Zhengzhou / Key Laboratory of Oil Crops in Huanghuai Valleys, Ministry of Agricultural, Zhengzhou 450002, China; 2 College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
  • Received:2011-08-22 Revised:2012-01-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 卢为国, E-mail: 123bean@163.com, Tel: 0371-65733647

摘要: 大豆贮藏蛋白主要成分是7S和11S球蛋白,大豆贮藏蛋白组分及其亚基组成决定了蛋白质的品质和加工特性。本研究选用134对细胞核SSR标记,对166份栽培大豆微核心种质进行基因分型,运用一般线性回归(general linear model, GLM)和复合线性回归(mixed linear model, MLM)方法进行标记与性状的关联分析,定位大豆蛋白亚基的相关基因。结果表明,2年均检测到的且与蛋白亚基相关联的SSR位点有14个,以MLM方法检测到5个SSR位点(Sat_062、Satt583、Satt291、Satt234和Satt595)与蛋白亚基相关联;7S组分各亚基变异程度较大,是引起11S/7S变异的主要原因;表型变异较大的亚基可能因为相关基因进化中发生重组较多,LD衰减距离较小,导致检测到较少的相关位点。本研究结果对蛋白亚基相关性状的标记辅助选择育种有重要的利用价值。

关键词: 栽培大豆[Glycine max (L.) Merr.], 11S亚基, 7S亚基, SSR, 关联分析

Abstract: The glycinin (11S) and β-conglycinin (7S) are major components of seed storage protein in soybean, which play important roles in the functionality of seed protein. In the present study, association mapping was used to map the QTLs (quantitative trait loci) for glycinin (11S) and β-conglycinin (7S) fractions. One hundred and sixty-six accessions from Chinese soybean minicore collection were genotyped with 134 selected simple-sequence repeat (SSR) markers. The storage protein of each accession was separated by SDS-PAGE method, and gels were scanned for individual subunits of 11S and 7S by ImageQuant TL software. The association analysis between SSR loci and protein subunit components was performed with TASSEL GLM (general linear model) and MLM (mixed linear model) programs. The results showed that, both in 2008 and 2010, fourteen SSR loci associated with the protein subunit components were screened out by GLM program, and five SSR (Satt234, Satt595, Sat_062, Satt583, and Satt291) loci by MLM program, respectively. The high variation of 7S subunits was the main reason that caused 11S/7S ratio variance. Fewer loci were detected to be associated with the protein subunits whose phenotypic variations were higher, which might be due to the more recombination incidents during the evolution of the related genes. Therefore the LD decay distances of these genes were short, some QTLs could not be detected with limited SSR markers. The results of this study are meaningful for the marker assisted selection breeding of soybean varieties with higher protein quality.

Key words: Cultivated soybean [Glycine max (L.) Merr.], Glycinin (11S), &, beta, -conglycinin (7S), Simple-sequence repeat (SSR), Association mapping

[1]Fukushima D. Recent progress of soybean protein foods: chemistry, technology and nutrition. Food Rev Intl, 1991, 7: 323–351

[2]Tayama T E, Kitamura K. Genetic improvement of seed storage protein using three variant allele sofglob-ulinubunts in soybean. Japan J Breed, 1989, 39: 137–147

[3]Huang L-H(黄丽华), Ma H(麻浩), Wang X-S(王显生), Cui G-X(崔国贤). Study on 11S and 7S fractions of seed storage proteins in soybean seeds. Chin J Oil Crop Sci (中国油料作物学报), 2003, 25(3): 20–23 (in Chinese with English abstract)

[4]Liu S-S(刘珊珊), Tian F-D(田福东), Gao L-H(高丽辉), Wang Z-K(王志坤), Ge Y-J(葛玉君), Diao G-Z(刁桂珠), Li W-B(李文滨). Effect of subunit composition of 7S globulin on soybean quality characteristics. Acta Agron Sin (作物学报), 2008, 34(5): 909–913 (in Chinese with English abstract)

[5]Cheng C-L(程翠林), Wang Z-Y(王振宇), Shi Y-G(石彦国), Zhao H-T(赵海田). Effect of soy protein subunits composition and ratio of 7S to11S on the quality and productivity of tofu. China Oils Fats (中国油脂), 2006, 31(4): 16–19 (in Chinese with English abstract)

[6]Liu S-S(刘珊珊), Wang Z-K(王志坤), Ge Y-J(葛玉君), Diao G-Z(刁桂珠), Tian F-D(田福东), Gao L-H(高丽辉), Li W-B(李文滨). Correlations between relative content of individual subunit of 7S globulin and quality characteristics in soybean germplasm. Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(3): 284–289 (in Chinese with English abstract)

[7]Ma H(麻浩), Wang X-S(王显生), Liu C(刘春), Yu T(俞阗), Hao X-Y(郝小燕), Gao W-R(高文瑞), He X-L(何小铃). The content variation of 7S, 11S globulins and their subunits of seed storage protein of 706 Chinese soybean germplasm. Soybean Sci (大豆科学), 2006, 25(1): 11–17 (in English with Chinese abstract)

[8]Wang L-X(王丽侠), Guo S-T(郭顺堂), Fu C-Z(付翠真), Guan R-X(关荣霞), Zhang Q-S(张其属), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). The analysis of 11S/7S in soybean storage protein. Chin Cereals Oil Assoc (中国粮油学报), 2004, 19(4): 64–66 (in Chinese with English abstract)

[9]Liu S-H(刘顺湖), Zhou R-B(周瑞宝), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). QTL mapping of protein related traits in soybean [Glycine max (L.) Merr.]. Acta Agron Sin (作物学报), 2009, 35(12): 2139–2149 (in Chinese with English abstract)

[10]Panthee D R, Kwanyuenb P, Samsa C E, Westa D R, Saxtonc A M, Pantalonea V R. Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J Am Oil Chem Soc, 2004, 81: 1005–1012

[11]Ruth E M. Gene mapping by linkage and association analysis. Mol Biotechnol, 1999, 3: 113–122

[12]Eizenga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci, 2006, 46: 1870–1878

[13]Flint-Garcia S A, Thuillet A, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley J F, Kresovich S, Goodman M M, Buckler E S. Maize association population: a high resolution platform for QTL dissection. Plant J, 2005, 44: 1054–1064

[14]Jun T H, Van K, Kim M Y, Lee S H. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 2008, 162: 179–191

[15]Qiu L-J(邱丽娟), Li Y-H(李英慧), Guan R-X(关荣霞), Liu Z-X(刘章雄), Wang L-X(王丽侠), Chang R-Z(常汝镇). Establishment, representative testing and research progress of soybean core collection and mini core collection. Acta Agron Sin (作物学报), 2009, 35(4): 571–579 (in Chinese with English abstract)

[16]Gai J-Y(盖钧镒), Wang Y-S(汪越胜). A study on the varietal eco-regions of soybeans in China. Sci Agric Sin (中国农业科学), 2001, 34(2): 139–145 (in Chinese with English abstract)

[17]Wang H-L(王红玲), Chen S-G(陈少光), Xiang S-P(向世鹏), Chen C(陈晨), Hao X-Y(郝小燕), Ma H(麻浩). Effects of climate factors on the relative contents of major storage protein fractions and its subunits in soybean seeds. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(4): 431–437 (in Chinese with English abstract)

[18]Wang X-S(王显生), Ma H(麻浩), Xiang S-P(向世鹏), Zhang G-Z(张国正), Cui G-X(崔国贤). The resolving effect of soybean storage protein subunits under different separation gel concentrations of SDS-PAGE. Chin J Oil Crop Sci (中国油料作物学报), 2004, 26(2): 75–80 (in Chinese with English abstract)

[19]Doyle J J, Doyle J I. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 149–151

[20]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128

[21]Wen Z-X(文自翔), Zhao T-J(赵团结), Zheng Y-Z(郑永战), Liu S-H(刘顺湖), Wang C-E(王春娥), Wang F(王芳), Gai J-Y(盖钧镒). Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron Sin (作物学报), 2008, 34(7): 1169–1178 (in Chinese with English abstract)

[22]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611–2620

[23]Zhu Y L, Song Q J, Hyten D L, Van Tassell C P, Matukumalli L K, Grimm D R, Hyatt S M, Fickus E W, Young N D, Cregan P B. Single nucleotide polymorphisms in soybean. Genetics, 2003, 163: 1123–1134

[24]Li Y H, Guan R X, Liu Z X, Ma Y S, Qiu L J. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor Appl Genet, 2008, 117: 857–871

[25]Yu J M, Gael P, William H B. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38(2): 203–207

[26]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol, 2005, 57: 461–485

[27]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509

[28]Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053–1067

[29]Poysa V, Woodrow L, Yu K. Effect of soy protein subunit composition on tofu quality. Food Res Intl, 2006, 39: 309–317

[30]Harada K, Barker S, Goldberg R. Soybean β-conglycinin genes are clustered in several DNA regions and are regulated by transcriptional and posttranscriptional processes. Plant Cell, 1989, 1: 415–425

[31]Moreira M A, Hermodson M A, Larkins B A, Nielsen N C. Partial characterization of the acidic and bacidic polypeptides of glycinin. Biol Chem, 1979, 254: 9921–9926

[32]Huang L-H(黄丽华), Ma H(麻浩), Wang X-S(王显生), Cui G-X(崔国贤). Study on 11S and 7S fractions of seed storage proteins in soybean seeds. Chin J Oil Crop Sci (中国油料作物学报), 2003, 25(3): 20–23 (in Chinese with English abstract)

[33]Chen H-M(陈海敏), Hua Y-F(华欲飞). Effects of various cultivars on functionalities of soy protein. China Western Cereals Oils Technol (西部粮油科技), 2001, 26(3): 36–38 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[7] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[10] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[11] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[12] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[13] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!