作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1042-1050.doi: 10.3724/SP.J.1006.2012.01042
僧珊珊,王群,张永恩,李潮海*,刘天学,赵龙飞,刘怀攀
ENG Shan-Shan,WANG Qun,ZHANG Yong-En,LI Chao-Hai*,LIU Tian-Xue,ZHAO Long-Fei,LIU Huai-Pan
摘要: 以玉米单交种登海662(DH662)和浚单20(XD20)为材料, 以盆栽方式研究了外源亚精胺(Spd)对淹水胁迫玉米叶片光合、根系生理及产量的调控效应。结果表明, 喷施亚精胺使遭受不同生育阶段淹水胁迫的DH662和XD20产量平均提高12.9%和10.8%。不同生育阶段淹水对玉米影响不同, 两个品种均以苗期淹水影响较大, 且Spd对其正调控效应也最好。喷施亚精胺提高了不同生育阶段淹水处理玉米叶片的净光合速率(Pn)、气孔导度(Gs)、气孔限制值(Ls)、最大光化学效率(Fv/Fm)、光量子产量(ΦPSII)和光化学猝灭系数(qP), 降低了细胞间隙CO2浓度(Ci)和非光化学猝灭系数(qN)。喷施亚精胺使淹水胁迫后DH662和XD20根系的超氧化物歧化酶(SOD)活性分别较单独淹水处理高出14.5%和4.6%, 过氧化氢酶(CAT)活性分别较淹水处理高出19.9%和18.2%;使DH662和XD20根系的异柠檬酸脱氢酶(IDH)和琥珀酸脱氢酶(SDH)活性增加26.1%和19.6%, 但抗坏血酸过氧化物酶(APX)活性无明显增加。喷施亚精胺缓解了淹水胁迫引起的膜脂过氧化, 使DH662和XD20根系活力平均增加12.9%, 根系丙二醛(MDA)含量平均降低23.9%。表明叶面喷施亚精胺可有效改善玉米根系和叶片生理功能, 从而降低减产幅度, 但不同玉米品种及其不同生育阶段对亚精胺的调控效应存在差异。
[1]Liu L(刘玲), Sha Y-Z(沙奕卓), Bai Y-M(白月明). Regional distribution of main agrometeorological disasters and disaster mitigation strategies in China. J Nat Disasters (自然灾害学报), 2003, 12(2): 92–97 (in Chinese with English abstract)[2]Chen G-P(陈国平), Zhao S-X(赵仕孝), Liu Z-W(刘志文). Studies on waterlogging of corn and protection measures: II. Responses of corn to waterlogging in various growing stages. Acta Agric Boreali-Sin (华北农学报), 1989, 4(1): 16–22 (in Chinese with English abstract) [3]Li X-J(李晓杰). Studies on waterlogging of corn and protection measures. Rural Practical Sci & Technol Inform (农村实用科技信息), 2009, (8): 8–9 (in Chinese) [4]Yordanova R Y, Popova L P. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol P1ant, 2007, 29: 535–541[5]Christiane F, Trevor G, Sergey S. Nutritional and chlorophyll fluorescence responses of Luceme (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil, 2005, 270: 31–45[6]Song F-B(宋凤斌), Wang X-B(王晓波). Abiotic Stress Physiological Ecology of Maize (玉米非生物逆境生理生态). Beijing: Science Press, 2005. pp 236–271 (in Chinese)[7]Bouchereau A, Aziz A, Larher F. Polyamines and environmental challenges, recent development. Plant Sci, 1999, 140: 103–125[8]Kasukabe Y, He L X, Nada K. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes transgenic Arabidopsis thaliana. Plant Cell Physiol, 2004, 45: 712–722[9]Németh M, Janda T, Horvath E. Exogenous salicylicacid increases polyamine content but may decrease drought tolerance in maize. Plant Sci, 2002, 162: 569–574[10]Zheng Y-Y(郑昀晔), Cao D-D(曹栋栋), Zhang S(张胜), Guan Y-J(关亚静), Hu J(胡晋). Effect of polyamines on chilling tolerance in seed imbibition and seed germination in maize. Acta Agron Sin (作物学报), 2008, 34(2): 261–267 (in Chinese with English abstract)[11]Wang X-Y(王晓云), Li X-D(李向东), Zou-Q(邹琦). Effect of polyamines on senescence of attached peanut leaves. Sci Agric Sin (中国农业科学), 2000, 33(3): 30–35 (in Chinese with English abstract)[12]Tian J(田婧), Guo S-R(郭世荣), Liu X-E(刘香娥), Zhang R-H(张润花), Cheng Y-J(程玉静). Effects of exogenous spermidine pretreatment on antioxidant system in cucumber seedling leaves under high temperature stress. Acta Bot Boreali-Occident Sin (西北植物学报), 2009, 29(11): 2261–2267 (in Chinese with English abstract)[13]Chattopadhayay M K, Tiwari B S, Chattopadhyay G. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol Plant, 2002, 116: 192–199[14]Jiang X-Y(江行玉), Song J(宋杰), Fan H(范海), Zhao K-F(赵可夫). Regulation of exogenous calcium and spermidine on ion balance and polyamine levels in maize seedlings under NaCl stress. Acta Phytophysiol Sin (植物生理学报), 2000, 26(6): 539–544 (in English with English abstract)[15]Wang S-P(王素平), Jia Y-X(贾永霞), Guo S-R(郭世荣), Zhou G-X(周国贤). Effect of polyamines on K+, Na+ and Cl? contents and distribution in different organs of cucumber (Cucumis sativus L.) seedlings under NaCl stress. Acta Ecol Sin (生态学报), 2007, 27(3): 1122–1129 (in Chinese with English abstract)[16]Drolet G, Dumbroff E B, Legge R L. Radical scavenging properties of polyamines. Phytochemisty, 1986, 25: 367–371[17]Genty B, Briantais J M, Baker N R. The relationship between the quantum yields of photosynthetic electron transport and photochemical quenching of chlorophyll fluorescence. Biochim Biophy Acta, 1989, 990: 87–92[18]Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive and up-regulates the activies of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401–2410[19]Zou Q(邹琦). Experimental Guidance of Plant Physiology (植物生理学实验指导). Beijing: China Agriculture Press, 2000. pp 173–174 (in Chinese)[20]Liu S-M(刘世名), Chen K-S(陈靠山), Xia K(夏凯), Zhou P-G(周培根), Zhou X(周燮). Effects of abscisic acid and its artificial aralogs on NAD+-specific isocitrate dehydrogenase activity in mitochondria from maize coleoptiles. Acta Phytophysiol Sin (植物生理学报), 2000, 26(6): 551–556 (in English with Chinese abstract)[21]Zou Q(邹琦). Guide to Physiological and Biochemical Experiments (生理生化实验指南). Beijing: China Agriculture Press, 1995. pp 30–31 (in Chinese)[22]Wang C-Y(王成业). The effects of flooding on the growth and yield of summer corn. J Henan Agric Sci (河南农业科学), 2010, (8): 20–21 (in Chinese) [23]Berry J A, Downton W J S. Environmental regulation of photosynthesis. In: Govind J ed. Photosynthesis, 2nd edn. New York: Academic Press, 1982. pp 263–343[24]Lu X-Q(卢雪琴), Xia H-P(夏汉平), Peng C-L(彭长连). The effects of submergence on the photosynthetic characteristics of five grasses. J Fujian Coll For (福建林学院院报), 2004, 24(4): 374–378 (in Chinese with English abstract)[25]Drolet G, Dumbroff E B, Legge R L. Radical scavenging properties of polyamines. Phytochemistry, 1986, 25: 367–371[26]Wang T(汪天), Wang S-P(王素平), Guo S-R(郭世荣), Sun Y-J(孙艳军). Effect of exogenous spermidines on Cucumis sativus L. seed1ings photosynthesis under root zone hypoxia stress. Chin J Appl Ecol (应用生态学报), 2006, 17(9): 1609–1612 (in Chinese with English abstract)[27]Li J(李军), Gao X-H(高新昊), Guo S-R(郭世荣). Effect of exogenous spermidine on photosynthesis of salt-stressed Cuellmis sativus seed1ings. Chin J Ecol (生态学杂志), 2007, 26(10): 1595–1599 (in Chinese with English abstract)[28]Zhang E-R(张恩让), Ren Y-Y(任媛媛), Hu H-Q(胡华群), Liu Y-H(刘昱卉), Chen S-S(陈珊珊). Effects of calcium on growth and respiratory metabolism of hot pepper seedling roots under flood stress. Acta Hort Sin (园艺学报), 2009, 36(12): 1749–1754 (in Chinese with English abstract) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[13] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[14] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[15] | 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214. |
|