欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1042-1050.doi: 10.3724/SP.J.1006.2012.01042

• 耕作栽培·生理生化 • 上一篇    下一篇

外源亚精胺对淹水胁迫玉米的生理调控效应

僧珊珊,王群,张永恩,李潮海*,刘天学,赵龙飞,刘怀攀   

  1. 河南农业大学农学院 / 农业部玉米区域技术创新中心, 河南郑州450002
  • 收稿日期:2011-12-05 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-04-06
  • 通讯作者: 李潮海, E-mail: lichaohai2005@yahoo.com.cn, Tel: 0371-63555629
  • 基金资助:

    本研究由河南省重大公益性项目(091100910100),国家公益性行业(气象)科研专项(GYHY201006041)和国家现代农业产业技术体系建设项目(NYCYTX-02)资助。

Effects of Exogenous Spermidine on Physiological Regulatory of Maize after Waterlogging Stress

ENG Shan-Shan,WANG Qun,ZHANG Yong-En,LI Chao-Hai*,LIU Tian-Xue,ZHAO Long-Fei,LIU Huai-Pan   

  1. College of Agronomy, Henan Agricultural University / Regional Center for New Technology Creation of Corn, Ministry of Agriculture, Zhengzhou 450002, China
  • Received:2011-12-05 Revised:2012-02-22 Published:2012-06-12 Published online:2012-04-06
  • Contact: 李潮海, E-mail: lichaohai2005@yahoo.com.cn, Tel: 0371-63555629

摘要: 以玉米单交种登海662(DH662)和浚单20(XD20)为材料, 以盆栽方式研究了外源亚精胺(Spd)对淹水胁迫玉米叶片光合、根系生理及产量的调控效应。结果表明, 喷施亚精胺使遭受不同生育阶段淹水胁迫的DH662和XD20产量平均提高12.9%和10.8%。不同生育阶段淹水对玉米影响不同, 两个品种均以苗期淹水影响较大, 且Spd对其正调控效应也最好。喷施亚精胺提高了不同生育阶段淹水处理玉米叶片的净光合速率(Pn)、气孔导度(Gs)、气孔限制值(Ls)、最大光化学效率(Fv/Fm)、光量子产量(ΦPSII)和光化学猝灭系数(qP), 降低了细胞间隙CO2浓度(Ci)和非光化学猝灭系数(qN)。喷施亚精胺使淹水胁迫后DH662和XD20根系的超氧化物歧化酶(SOD)活性分别较单独淹水处理高出14.5%和4.6%, 过氧化氢酶(CAT)活性分别较淹水处理高出19.9%和18.2%;使DH662和XD20根系的异柠檬酸脱氢酶(IDH)和琥珀酸脱氢酶(SDH)活性增加26.1%和19.6%, 但抗坏血酸过氧化物酶(APX)活性无明显增加。喷施亚精胺缓解了淹水胁迫引起的膜脂过氧化, 使DH662和XD20根系活力平均增加12.9%, 根系丙二醛(MDA)含量平均降低23.9%。表明叶面喷施亚精胺可有效改善玉米根系和叶片生理功能, 从而降低减产幅度, 但不同玉米品种及其不同生育阶段对亚精胺的调控效应存在差异。

关键词: 淹水胁迫, 亚精胺, 玉米, 抗氧化酶

Abstract: Apot experiment with two maize varieties DH662 and XD20 was conducted to studythe regulatory effects of exogenous spermidine on photosynthesis and physiological characteristics and yield of maize after waterlogging stress. The results showed that the average yield of DH662 and XD20 was increased by 12.9% and 10.8% after topdressing exogenous spermidine. The effect of waterlogging in different growth stages on maize was different. The treatment at seedling to jointing stage showed more influence on the two varieties. And the effects of exogenous spermidine was best at seedling to jointing stage. The topdressing of exogenous spermidinecould improve the utilization efficiency of light energy in different growth stages, and Pn, Gs, Ls, Fv/Fm, ΦPSII, qP of leaves, but reduce Ci and qN. The activities of SOD and CAT in DH662 were increased significantly by 14.5% and 19.9%, while those in XD20 were increased significantly by 4.6% and 18.2% as compared with the waterlogging treatment. And the average activity of IDH and SDH in both the two cultivars was increased by 26.1% and 19.6%, while the activity of APX was not increased significantly. The exogenous spermidine could repress the cell membrane oxidation. The average root activity in DH662 and XD20 was increased by 12.9% and MDA content was decreased by 23.9%. Therefore, the topdressing of exogenous spermidine improves the physiological functions of leaves and roots, resulting in lower yield losses caused by waterlogging, but the sensitivity of different varities and different growth stages to Spd was different.

Key words: Waterlogging stress, Exogenous spermidine, Maize, Anti-oxidant enzymes

[1]Liu L(刘玲), Sha Y-Z(沙奕卓), Bai Y-M(白月明). Regional distribution of main agrometeorological disasters and disaster mitigation strategies in China. J Nat Disasters (自然灾害学报), 2003, 12(2): 92–97 (in Chinese with English abstract)

[2]Chen G-P(陈国平), Zhao S-X(赵仕孝), Liu Z-W(刘志文). Studies on waterlogging of corn and protection measures: II. Responses of corn to waterlogging in various growing stages. Acta Agric Boreali-Sin (华北农学报), 1989, 4(1): 16–22 (in Chinese with English abstract)

[3]Li X-J(李晓杰). Studies on waterlogging of corn and protection measures. Rural Practical Sci & Technol Inform (农村实用科技信息), 2009, (8): 8–9 (in Chinese)

[4]Yordanova R Y, Popova L P. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol P1ant, 2007, 29: 535–541

[5]Christiane F, Trevor G, Sergey S. Nutritional and chlorophyll fluorescence responses of Luceme (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil, 2005, 270: 31–45

[6]Song F-B(宋凤斌), Wang X-B(王晓波). Abiotic Stress Physiological Ecology of Maize (玉米非生物逆境生理生态). Beijing: Science Press, 2005. pp 236–271 (in Chinese)

[7]Bouchereau A, Aziz A, Larher F. Polyamines and environmental challenges, recent development. Plant Sci, 1999, 140: 103–125

[8]Kasukabe Y, He L X, Nada K. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes transgenic Arabidopsis thaliana. Plant Cell Physiol, 2004, 45: 712–722

[9]Németh M, Janda T, Horvath E. Exogenous salicylicacid increases polyamine content but may decrease drought tolerance in maize. Plant Sci, 2002, 162: 569–574

[10]Zheng Y-Y(郑昀晔), Cao D-D(曹栋栋), Zhang S(张胜), Guan Y-J(关亚静), Hu J(胡晋). Effect of polyamines on chilling tolerance in seed imbibition and seed germination in maize. Acta Agron Sin (作物学报), 2008, 34(2): 261–267 (in Chinese with English abstract)

[11]Wang X-Y(王晓云), Li X-D(李向东), Zou-Q(邹琦). Effect of polyamines on senescence of attached peanut leaves. Sci Agric Sin (中国农业科学), 2000, 33(3): 30–35 (in Chinese with English abstract)

[12]Tian J(田婧), Guo S-R(郭世荣), Liu X-E(刘香娥), Zhang R-H(张润花), Cheng Y-J(程玉静). Effects of exogenous spermidine pretreatment on antioxidant system in cucumber seedling leaves under high temperature stress. Acta Bot Boreali-Occident Sin (西北植物学报), 2009, 29(11): 2261–2267 (in Chinese with English abstract)

[13]Chattopadhayay M K, Tiwari B S, Chattopadhyay G. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol Plant, 2002, 116: 192–199

[14]Jiang X-Y(江行玉), Song J(宋杰), Fan H(范海), Zhao K-F(赵可夫). Regulation of exogenous calcium and spermidine on ion balance and polyamine levels in maize seedlings under NaCl stress. Acta Phytophysiol Sin (植物生理学报), 2000, 26(6): 539–544 (in English with English abstract)

[15]Wang S-P(王素平), Jia Y-X(贾永霞), Guo S-R(郭世荣), Zhou G-X(周国贤). Effect of polyamines on K+, Na+ and Cl? contents and distribution in different organs of cucumber (Cucumis sativus L.) seedlings under NaCl stress. Acta Ecol Sin (生态学报), 2007, 27(3): 1122–1129 (in Chinese with English abstract)

[16]Drolet G, Dumbroff E B, Legge R L. Radical scavenging properties of polyamines. Phytochemisty, 1986, 25: 367–371

[17]Genty B, Briantais J M, Baker N R. The relationship between the quantum yields of photosynthetic electron transport and photochemical quenching of chlorophyll fluorescence. Biochim Biophy Acta, 1989, 990: 87–92

[18]Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive and up-regulates the activies of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401–2410

[19]Zou Q(邹琦). Experimental Guidance of Plant Physiology (植物生理学实验指导). Beijing: China Agriculture Press, 2000. pp 173–174 (in Chinese)

[20]Liu S-M(刘世名), Chen K-S(陈靠山), Xia K(夏凯), Zhou P-G(周培根), Zhou X(周燮). Effects of abscisic acid and its artificial aralogs on NAD+-specific isocitrate dehydrogenase activity in mitochondria from maize coleoptiles. Acta Phytophysiol Sin (植物生理学报), 2000, 26(6): 551–556 (in English with Chinese abstract)

[21]Zou Q(邹琦). Guide to Physiological and Biochemical Experiments (生理生化实验指南). Beijing: China Agriculture Press, 1995. pp 30–31 (in Chinese)

[22]Wang C-Y(王成业). The effects of flooding on the growth and yield of summer corn. J Henan Agric Sci (河南农业科学), 2010, (8): 20–21 (in Chinese) 

[23]Berry J A, Downton W J S. Environmental regulation of photosynthesis. In: Govind J ed. Photosynthesis, 2nd edn. New York: Academic Press, 1982. pp 263–343

[24]Lu X-Q(卢雪琴), Xia H-P(夏汉平), Peng C-L(彭长连). The effects of submergence on the photosynthetic characteristics of five grasses. J Fujian Coll For (福建林学院院报), 2004, 24(4): 374–378 (in Chinese with English abstract)

[25]Drolet G, Dumbroff E B, Legge R L. Radical scavenging properties of polyamines. Phytochemistry, 1986, 25: 367–371

[26]Wang T(汪天), Wang S-P(王素平), Guo S-R(郭世荣), Sun Y-J(孙艳军). Effect of exogenous spermidines on Cucumis sativus L. seed1ings photosynthesis under root zone hypoxia stress. Chin J Appl Ecol (应用生态学报), 2006, 17(9): 1609–1612 (in Chinese with English abstract)

[27]Li J(李军), Gao X-H(高新昊), Guo S-R(郭世荣). Effect of exogenous spermidine on photosynthesis of salt-stressed Cuellmis sativus seed1ings. Chin J Ecol (生态学杂志), 2007, 26(10): 1595–1599 (in Chinese with English abstract)

[28]Zhang E-R(张恩让), Ren Y-Y(任媛媛), Hu H-Q(胡华群), Liu Y-H(刘昱卉), Chen S-S(陈珊珊). Effects of calcium on growth and respiratory metabolism of hot pepper seedling roots under flood stress. Acta Hort Sin (园艺学报), 2009, 36(12): 1749–1754 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!