欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1097-1106.doi: 10.3724/SP.J.1006.2012.01097

• 耕作栽培·生理生化 • 上一篇    下一篇

三角形强化栽培模式下氮肥运筹对II优498产量及氮肥利用的影响

杨志远1,胡蓉1,2,孙永健1,徐徽1,许远明3,马均1,*   

  1. 1 四川农业大学水稻研究所/农业部西南作物生理生态与耕作重点实验室,四川温江611130; 2四川省良种繁育站,四川成都610200; 3眉山市东坡区农业局,四川眉山620032
  • 收稿日期:2011-12-28 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-03-29
  • 通讯作者: 马均, E-mail: majunp2002@163.com
  • 基金资助:

    本研究由国家粮食丰产科技工程项目(2011BAD16B05)资助。

Effects of Nitrogen Fertilizer Management on Yield and Nitrogen Use Efficiency of Eryou 498 in Triangle-Planted System of Rice Intensification

YANG Zhi-Yuan1,HU Rong1,2,SUN Yong-Jian1,XU Hui1,XU Yuan-Ming3,MA Jun1,*   

  1. 1 Rice Research Institute of Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Wenjiang 611130, China; 2 Fine Varieties Breeding Center of Sichuan, Chengdu 610200, China; 3 Dongpo Agricultural Bureau, Meishan 620032, China
  • Received:2011-12-28 Revised:2012-02-22 Published:2012-06-12 Published online:2012-03-29
  • Contact: 马均, E-mail: majunp2002@163.com

摘要: 以大穗型杂交籼稻II优498为材料,在三角形强化栽培(triangle-planted system of rice intensification, TSRI)适宜的密度和秧龄条件下,研究施氮量和施肥比例对TSRI结实期叶面积、光合作用以及干物质积累与转运的影响,并探讨花前期物质积累转运与花后期光合生产在产量形成过程中的作用,同时探索既能提高产量又能减少氮肥损失的氮肥运筹措施。结果显示,TSRI下,除蜡熟期叶面积指数(leaf area index, LAI)外,施氮量和施肥比例对光合作用和LAI有显著运筹作用; 增施氮肥和氮肥后移可以显著提高齐穗期和蜡熟期剑叶净光合速率,LAI则随施氮量和氮肥后移程度增加多呈抛物线趋势。TSRI下施氮量和施肥比例共同提高总颖花数增加产量,而施氮量和施肥比例又各自通过提高千粒重和结实率来增加产量。TSRI下,花前干物质积累量、物质转运量、转运率与产量极显著正相关,施氮量为150 kg hm-2, 穗肥占总施氮量的30%的处理在显著增大花前干物质积累量和籽粒灌浆期间向穗部的转运量实现高产的同时显著提高氮肥农学利用率和生理利用率,是TSRI平衡产量与氮肥利用率的最优氮肥运筹组合。

关键词: 水稻, 三角形强化栽培, 施氮量, 氮肥运筹, 氮肥利用

Abstract: Hybrid rice Eryou 498 was used to investigate the effects of nitrogen (N) fertilizer management on leaf area, photosynthetic rate in productive phase, and also dry-matter accumulation and its transportation in triangle-planted system of rice intensification (TSRI) with appropriate seedling age and density. At the same time, the effects of dry-matter accumulation before anthesis and its transportation and dry-matter accumulation after anthesis on yield formation were also studied to explore a N fertilizer management which could both increase yield and reduce the waste of N. The results showed that in TSRI N fertilizer management had significant effects on leaf area index (LAI) and photosynthetic rate except the LAI in waxy ripening stage; with the increase of N rate and postponing N application, net photosynthetic rate in flag leaf in full heading stage and waxy ripe stage increased significantly; LAI in productive phase exhibited a parabola mostly with the increase of N rate and postponing N application. In TSRI, N rate and ratio of application both enlarged total glumes to increase yield. At the same time, N rate enlarged 1000-grain weight and ratio of application improved seed-setting rate to increase yield respectively. In TSRI, dry-matter accumulation before anthesis, dry-matter of transportation, and transportation rate of dry-matter had significantly positive correlation with yield respectively. The treatment which N rate was 150 kg ha-1 and panicle fertilizer was 30% of the whole N fertilizer enlarged dry-matter accumulation before anthesis and dry-matter of transportation significantly to reach maximum yield. It also improved N agronomy efficiency and N physiology efficiency significantly, so it was the best combination which could both increase yield and reduce the waste of N fertilizer to the maximum degree.

Key words: Rice, Triangle-planted system of rice intensification (TSRI), N rate, N fertilizer management, N use efficiency

[1]Boeckman O C, Olfs H W. Fertilizers, agronomy and N2O. Nutr Cycl Agroecosyst, 1998, 52: 165–170

[2]Li G-H(李刚华), Zhang G-F(张国发), Chen G-L(陈功磊), Wang S-H(王绍华), Ling Q-H(凌启鸿), Ding Y-F(丁艳锋). Population characteristics of super japonica rice Ningjing 1 and Ningjing 3 and its responses to nitrogen. Acta Agron Sin (作物学报), 2009, 35(6): 1106–1114 (in Chinese with English abstract)

[3]Shi H-R(史鸿儒), Zhang W-Z(张文忠), Xie W-X(解文孝), Yang Q(杨庆), Zhang Z-Y(张振宇), Han Y-D(韩亚东), Xu Z-J(徐正进), Chen W-F(陈温福). Analysis of matter production characteristics under different nitrogen application patterns of Japonica super rice in north China. Acta Agron Sin (作物学报), 2008, 34(11): 1985–1993 (in Chinese with English abstract)

[4]Xu G-W(徐国伟), Tan G-L(谈桂露), Wang Z-Q(王志琴), Liu L-J(刘立军), Yang J-C(杨建昌). Effects of wheat-residue application and site-specific nitrogen management on growth and development in direct-seeding rice. Acta Agron Sin (作物学报), 2009, 35(4): 685–694 (in Chinese with English abstract)

[5]Yang H-S(杨海生), Zhang H-C(张洪程), Yang L-Q(杨连群), Zhang S-Y(张士永), Dai Q-G(戴其根), Huo Z-Y(霍中洋). Effects of nitrogen operations according to leaf-age on yield and quality in good-quality rice. J China Agric Univ (中国农业大学学报), 2002, 7(3): 19–26 (in Chinese with English abstract)

[6]Li X-Y(李旭毅), Sun Y-J(孙永健), Cheng H-B(程洪彪), Zheng H-Z(郑宏祯), Liu S-J(刘树金), Hu R(胡蓉), Ma J(马均). Effects of nitrogen regulation on dry matter accumulation and grain yield of rice under different cultivation models and two kinds of ecological conditions. Plant Nutr Fert Sci (植物营养与肥料学报), 2010, 17(4): 773–781 (in Chinese with English abstract)

[7]Yang A-Z(杨安中), Li M-L(李孟良), Mu Y-L(牟筱玲), Liu A-R(刘爱荣). Effect of nitrogen application on photothesis and senescence of flag-leaf and yield of upland rice cultivated in mulched soil. Acta Pedol Sin (土壤学报), 2006, 43(4): 703–707 (in Chinese with English abstract)

[8]Ren W-J(任万军), Wu J-X(伍菊仙), Lu T-Q(卢庭启), Wu J-X(吴锦秀), Yang W-Y(杨文钰), Peng H(彭虎). Effects of nitrogen strategies on dry matter accumulation, transformation and distribution of broadcasted rice among high standing-stubbles under no-tillage condition. J Sichuan Agric Univ (四川农业大学学报), 2009, 27(2): 162–166 (in Chinese with English abstract)

[9]Jiang L-G(江立庚), Cao W-X(曹卫星). Physiological mechanism and approaches for efficient nitrogen utilization in rice. Chin J Rice Sci (中国水稻科学), 2002, 16(3): 261–264 (in Chinese with English abstract)

[10]Du Y-L(杜永林), Su Z-F(苏祖芳). Effects of nitrogen applications on source sink quality of rice in heading stage. Gengzuo yu Zaipei (耕作与栽培), 1999, (2): 20–23 (in Chinese)

[11]Wan L-J(万靓军), Zhang H-C(张洪程), Huo Z-Y(霍中洋), Lin Z-C(林忠成), Dai Q-G(戴其根), Xu K(许轲), Zhang J(张军). Grain yield construction and N fertilizer efficiency of super hybrid rice under different N applications. Hybrid Rice (杂交水稻), 2003, 18(1): 44–48 (in Chinese with English abstract)

[12]Wu W-G(吴文革), Zhang S-H(张四海), Zhao J-J(赵决建), Wu G-C(吴桂成), Li Z-F(李泽福), Xia J-F(夏加发). Nitrogen uptake, utilization and rice yield in the north rimland of double-cropping rice region as affected by different nitrogen management strategies. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(5): 757–764 (in Chinese with English abstract)

[13]Long X(龙旭), Wang R-Q(汪仁全), Sun Y-J(孙永健), Ma J(马均). Characteristics of population development and yield formation of rice under triangle- planted system of rice intensification at different nitrogen application amounts. Chin J Rice Sci (中国水稻科学), 2010, 24(2): 162–168 (in Chinese with English abstract)

[14]Yuan L-P(袁隆平), Ma G-H(马国辉), Zhang Y-Z(张玉烛). Theory and Practice of the Modified System of Rice Intensification for Super Hybrid Rice (超级杂交稻强化栽培理论与实践). Changsha: Hunan Scientific and Technical Publishers, 2005. pp 43–52 (in Chinese)

[15]Wang R-Q(汪仁全), Ma J(马均), Tong P(童平), Zhang R-P(张荣萍), Li Y(李艳), Fu T-L(傅泰露), Wu H-Z(吴合洲), Liu Z-B(刘志彬). Effects of planting method of triangle of system of rice intensification (TSRI) on photosynthetic characteristics and formation of grain yield. Hybrid Rice (杂交水稻), 2006, 21(6): 60–65(in Chinese with English abstract)

[16]Chen Y(陈宇), Ma J(马均), Tong P(童平), Zhu P(朱萍), Li S-X(李树杏), Wang G-Q(王根齐), Xu M-Y(许远明). Effect of different fertilization application manners on physiological traits and grain yield under planting method of TSRI of older seedlings with 7 leaves. Southwest Chin J Agric Sci (西南农业学报), 2009, 22(2): 357–363 (in Chinese with English abstract)

[17]Can Y(蔡艳), Tao W-H(陶武辉), Zhang Y(张毅), Zhang X-Z(张锡洲). Effect of planting density on the production and N utilization of rice under large-triangle intensification system. Chin J Eco-Argic (中国生态农业学报), 2008, 16(6): 1603–1605 (in Chinese with English abstract)

[18]He Y-D(贺阳冬), Ma J(马均), Wei W-R(魏万蓉). Effect of different kinds of fertilizers on the yield and grain quality in the SRI. Chin Agric Sci Bull (中国农学通报), 2004, 20(6): 177–182 (in Chinese with English abstract)

[19]Jiang X-L(姜心禄), Zheng J-G(郑家国), Chi Z-Z(池忠志), He S-L(何树林), Wang S-H(王少华). Study on nitrogen regulation of the system of rice intensification (SRI) of hybrid rice. Southwest Chin J Agric Sci (西南农业学报), 2009, 22(4): 996–1000 (in Chinese with English abstract)

[20]Zheng X(郑希), Sun Y(孙艺), Yang W-F(杨为芳). Effect of different application methods of nitrogen fertilizer on the yield and quality of late rice by intensified cultivation with no-tillage. Guangxi Agric Sci (广西农业科学), 2006, 37(3): 298–332 (in Chinese with English abstract)

[21]Yang X-T(杨祥田), Lin X-Q(林贤青), Zeng X-Y(曾孝元), Wang X-H(王旭辉), Luo S-Z(罗三镯). Effect of nitrogen management on grain yield and nitrogen utilization under the system of intensified rice cultivation. Chin J Soil Sci (土壤通报), 2007, 38(3): 464–466 (in Chinese with English abstract)

[22]Pan Z-G(潘志高), Chen H-K(陈洪坤), Shou J-Y(寿建尧), Jin Y(金应). Effects of nitrogen rate on grain yield under the system of rice intensification (SRI). China Rice (中国稻米), 2005, (2): 35–36 (in Chinese)

[23]Kobata T, Sugawara M, Takatu S. Shading during the early grain filling period does not affect potential grain dry matter increase in rice. Agron J, 2000, 92: 411–417

[24]Venkateswarhu B, Prasad G S V. Pre- and post-flowering photosynthetic contribution to grain yield in rice. Indian J Plant Physiol, 1980, 23: 300–308

[25]Zhang X-Z(张秀芝), Y Q(易琼), Zhu P(朱平), He P(何萍), Yang L(杨利), Fan X-P(范先鹏), Xiong G-Y(熊桂云). Agronomic responses to nitrogen application and nitrogen utilization in rice fields. Plant Nutr Fert Sci (植物营养与肥料学报), 2011, 17(4): 782–788 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!