作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1743-1751.doi: 10.3724/SP.J.1006.2012.01743
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
张勇1,申小勇1,张文祥1,陈新民1,阎俊1,2,张艳1,王德森1,王忠伟1,刘悦芳3,田宇兵1,夏先春1,何中虎1,4,*
ZHANG Yong1,SHEN Xiao-Yong1,ZHANG Wen-Xiang1,CHEN Xin-Min1,YAN Jun1,2,ZHANG Yan1,WANG De-Sen1,WANG Zhong-Wei1,LIU Yue-Fang3,TIAN Yu-Bing1,XIA Xian-Chun1,HE Zhong-Hu1,4,*
摘要:
谷蛋白亚基组成对小麦加工品质具有重要作用。以豫麦34、藁城8901和中优9507为优质亲本,以轮选987、石4185和周麦16为农艺回交亲本,采用5+10亚基和1B/1R易位分子标记结合田间农艺性状选择,育成4个BC2F4群体共125个高代品系。2008—2009年度,将这些高代品系分别种植于北京和河南安阳,分析了5+10亚基和1B/1R易位对蛋白质含量、和面时间和峰值曲线面积等品质参数的影响。4个群体中蛋白质含量与和面时间、峰值曲线面积等参数变幅较大,后代品系间品质差异明显,5+10亚基可显著增加和面时间和峰值曲线面积,1B/1R易位对和面时间和峰值曲线面积的作用则受遗传背景的影响。和面时间和峰值曲线面积等主要品质参数还受亚基表达量的影响,和面时间和峰值曲线面积与低分子量谷蛋白亚基含量显著正相关(r = 0.38~0.74,P < 0.05),导入5+10亚基可显著增加高分子量和低分子量谷蛋白亚基含量;Glu-B3位点等位基因的变化对高分子量谷蛋白亚基含量的影响不显著,对低分子量谷蛋白亚基含量的影响则因组合而异。通过有限回交,育种早代在室内采用5+10优质亚基和1B/1R易位分子标记辅助选择,结合田间农艺性状选择,可以加速培育优质新品种。
[1]He Z-H(何中虎), Xia X-C(夏先春), Chen X-M(陈新民), Zhuang Q-S(庄巧生). Progress of wheat breeding in China and the future perspective. Acta Agron Sin (作物学报), 2011, 37(2): 202-215 (in Chinese with English abastact)[2]Branlard G, Dardevet M. Diversity of grain proteins and bread wheat quality: I. Correlation between gliadin bands and flour quality characteristics. J Cereal Sci, 1985, 3: 329-343[3]Payne P I, Nightigale M A, Krattiger A F. The relationship between HMW glutenin subunit composmon and the bread-making quality of British-grown wheat varieties. J Sci Food Agric, 1987, 40: 51-65[4]Zhang Y, Tang J W, Yan J, Zhang Y L, Zhang Y, Xia X C, He Z H. The gluten protein and interactions between components determine mixograph properties in an F6 recombinant inbred line population in bread wheat. J Cereal Sci, 2009, 50: 219-226[5]Gupta R B, Shepherd K W. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin: I. Variation and genetic control of the subunits in hexaploid wheats. Theor Appl Genet, 1990, 80: 65-74[6]Liu L(刘丽), Zhou Y(周阳), He Z-H(何中虎), Wang D-S(王德森), Zhang Y(张艳), Peña R J, Yu Y-X(于亚雄). Effect of allelic variation in HMW and LMW glutenin subunits on the processing auality in common wheat. Sci Agric Sin (中国农业科学), 2004, 37(1): 8-14 (in Chinese with English abastact)[7]Song J-M(宋健民), Liu A-F(刘爱峰), Wu X-Y(吴祥云), Liu J-J(刘建军), Zhao Z-D(赵振东), Liu G-T(刘广田). Composition and content of high molecular weight glutenin subunits and their relations with wheat quality. Sci Agric Sin (中国农业科学), 2003, 36(2): 128-133 (in Chinese with English abastact)[8]Liu L(刘丽), Yan J(阎俊), Zhang Y(张艳), He Z-H(何中虎), Peña R J, Zhang L-P(张立平). Allelic variation at the Glu-1 and Glu-3 loci and presence of 1B/1R translocation, and their effects on processing quality in cultivars and advanced lines from autumn-sown wheat regions in China. Sci Agric Sin (中国农业科学), 2005, 38(10): 1944-1950 (in Chinese with English abastact)[9]Pogna N E, Autran J C, Mellini F, Lafiandra D, Feillet P. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. J Cereal Sci, 1990, 11: 15-34[10]Gupta R B, Batey I L, MacRitchie F. Relationship between protein composition and functional properties of wheat flours. Cereal Chem, 1992, 69: 125-131[11]Zhou Y(周阳), He Z-H(何中虎), Zhang G-S(张改生), Xia L-Q(夏兰琴), Chen X-M(陈新民), Gao Y-C(高永超), Jin Z-B(井赵斌), Yu G-J(于广军). Utilization of 1BL/ 1RS translocation in wheat breeding in China. Acta Agron Sin (作物学报), 2004, 30(6): 531-535 (in Chinese with English abastact)[12]Bustos A D, Rubio P, Jouve N. Molecular characterization of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenins of wheat. Theor Appl Genet, 2000, 100: 1085-1094[13]Bustos A D, Rubio P, Soler C, Garcia P, Jouve N. Marker assisted selection to improve HMW-glutenins in wheat. Euphytica, 2001, 119: 69-73[14]D’Ovidio R, Porceddu E, Lafiandra D. PCR analysis of genes encoding allelic variants of high-molecular-weight glutenin subunits at the Glu-D1 locus. Theor Appl Genet, 1994, 88: 175-180[15]D’Ovidio R, Masci S, Porceddu E. Development of a set of oligonucleotide primers specific for genes at the Glu-1 complex loci of wheat. Theor Appl Genet, 1995, 91: 189-194[16]Lei Z S, Gale K R, He Z H, Gianibelli M C, Larroque O, Butow B J. Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J Cereal Sci, 2006, 43: 94-101[17]Smith H A, Barlana H S, Ogbonnaya F C. Implementstion of markers in Australian wheat breading. Aust J Agric Res, 2001, 52: 1349-1356[18]Wang L H, Zhao X L, He Z H, Ma W, Appels R, Peña P J, Xia X C. Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). Theor Appl Genet, 2009, 118: 525-539[19]Wang L H, Li G Y, Peña R J, Xia X C, He Z H. Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.). J Cereal Sci, 2010, 51: 305-312[20]Zhang X F, Liu D C, Yang W L, Liu K F, Sun J Z, Guo X L, Li Y W, Wang D W, Ling H Q, Zhang A M. Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 1503-1516[21]Zhao X L, Xia X C, He Z H, Le Z S, Appels R, Yang Y, Sun Q X, Ma W. Novel DNA variations to characterize low molecular weight glutenin Glu-D3 genes and develop STS markers in common wheat. Theor Appl Genet, 2007, 114: 451-460[22]Ma W, Zhang W, Gale K R. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 2003, 134: 51-60[23]Zhang X-K(张晓科), Xia X-C(夏先春), Wang Z-W(王忠伟), He X-Y(何心尧), Yang Y(杨燕), He Z-H(何中虎). Establishment of multiplex-PCR for quality traits in common wheat. Acta Agron Sin (作物学报), 2007, 33(10): 1703-1710 (in Chinese with English abastact)[24]Varghese J P, Struss D, Kazman M E. Rapid screening of selected European winter wheat varieties and segregating population for the Glu-D1d allele using PCR marker. Plant Breed, 1996, 115: 451-454[25]Xu X-B(徐相波), Liu D-C(刘冬成), Guo X-L(郭小丽), Liu L-K(刘立科), Jia X(贾旭), Zhang X-Q(张相岐), Zhang A-M(张爱民). Identification and marker-assisted selection of HMW-glutenin 1Dx5 gene in wheat. Sci Agric Sin (中国农业科学), 2005, 38(2): 415-419 (in Chinese with English abastact)[26]Zhang X-K(张晓科), Wei Y-M(魏益民). Method and its effect of rapid transformation of HMW-GS genes with good baking properties into higher yielding wheat line. Sci Agric Sin (中国农业科学), 2005, 38(1): 202-212 (in Chinese with English abastact)[27]Shen X-Y(申小勇), Yan J(阎俊), Chen X-M(陈新民), Zhang Y(张艳), Li H-L(李慧玲), Wang D-S(王德森), He Z-H(何中虎), Zhang Y(张勇). Relationship among mixograph parameters and farinograph, extensograph, and bread-making quality traits. Acta Agron Sin (作物学报), 2010, 36(6): 1037-1043 (in Chinese with English abastact)[28]Zhang P P, He Z H, Zhang Y, Xia X C, Liu J J, Yan J, Zhang Y. Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fractions. Cereal Chem, 2007, 84: 370-378[29]SAS Institute SAS User’s Guide, Statistics. Cary, NC USA: SAS Institute Inc., 2000[30]Eathington S R, Crosbie T M, Edwards M D, Reiter R S, Bull J K. Molecular markers in a commercial breeding program. Crop Sci, 2007, 47: S154-S163[31]Liu L(刘丽), Liu J-J(刘建军), He Z-H(何中虎). Effect of allelic variation at the Glu-1 and Glu-3 loci and presence of 1BL/1RS translocation on pan bread and dry white Chinese noodle quality. Sci Agric Sin (中国农业科学), 2004, 37(9): 1265-1273 (in Chinese with English abastact)[32]He Z H, Liu L, Xia X C, Liu J J, Peña R J. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chem, 2005, 82: 345-350[33]Graybosch R A, Peterson C J, Hansen L E, Worrall D, Shelton D R, Lukaszewski A. Comparative flour quality and protein characteristics of 1BL/1RS and 1AL/1BS wheat-rye translocation. J Cereal Sci, 1993, 17: 95-106[34]Darlington H, Fido R, Tatham A S, Jones H, Salmon S E, Shewry P R. Milling and baking properties of field grown wheat expressing HMW subunit transgenes. J Cereal Sci, 2003, 38: 301-306[35]Butow B J, Ma W, Gale K R, Cornish G B, Rampling L, Larroque O, Morell M K, Békés F. Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strengthn. Theor Appl Genet, 2003, 107: 1524-1532[36]Lerner S E, Ponzio N R, Rogers W J. Relationship of over-expression of high molecular weight glutenin subunit Bx7 with gluten strength in bread wheat. In: Proceedings of the 10th International Wheat Genetics Symposium, Poestum, Italy, 2003. pp 1360-1362[37]Zhang P P, He Z H, Zhang Y, Xia X C, Liu J J, Yan J, Zhang Y. Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fraction. Cereal Chem, 2007, 84: 370-378[38]Wu L-R(吴立人), Meng Q-Y(孟庆玉), Xie S-X(谢水仙), Yang H-A(杨华安), Wang K-N(汪可宁), Yuan W-H(袁文焕), Song W-Z(宋位中), Yang J-X(杨家秀), Li Y-F(李艳芳), Yang S-C(杨世诚). The discovery and studies on physiological races of wheat stripe rust virulent to Lovrin 10 and Lovrin 13. Sci Agric Sin (中国农业科学), 1988, 21(5): 53-58 (in Chinese with English abastact)[39]Kim W, Johnson J W, Baenziger P S, Lukaszewski A J, Gaines C S, Kim W. Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci, 2004, 44: 1254-1258[40]Kumlay A M, Baenziger P S, Gill K S, Shelton D R, Graybosch R A, Lukaszewski A J, Wesenberg D M. Understanding the effect of rye chromatin in bread wheat. Crop Sci, 2003, 43: 1643-1651 |
[1] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[2] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[3] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[4] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
[5] | 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502. |
[6] | 王旭虹,李鸣晓,张群,金峰,马秀芳,姜树坤,徐正进,陈温福. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响[J]. 作物学报, 2019, 45(4): 538-545. |
[7] | 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343. |
[8] | 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840. |
[9] | 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769. |
[10] | 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637. |
[11] | 田宇,杨蕾,李英慧,邱丽娟. 抗大豆胞囊线虫SCN3-11位点的KASP标记开发和利用[J]. 作物学报, 2018, 44(11): 1600-1611. |
[12] | 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447. |
[13] | 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705. |
[14] | 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源[J]. 作物学报, 2018, 44(04): 473-482. |
[15] | 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性[J]. 作物学报, 2018, 44(04): 505-511. |
|