作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1900-1907.doi: 10.3724/SP.J.1006.2012.01900
万华方,卢东,梁颖*,孙夫军,李加纳
WAN Hua-Fang,LU Dong,LIANG Ying*,SUN Fu-Jun,LI Jia-Na
摘要:
以3对遗传背景相同的甘蓝型黄籽和黑籽油菜为材料,研究甘蓝型油菜种子发育过程中內源细胞分裂素(ZR)、各种色素、色素合成相关酶活性的动态变化及其相互关系,并以外源细胞分裂素类物质(6-BA)加以验证,结果表明,相同遗传背景下的黄籽油菜种子的ZR含量较黑籽油菜高,花后27 d比黑籽高4~5倍; 在甘蓝型黄籽油菜种子发育前期(27 d阶段)种子中细胞分裂素含量越高其成熟种子色泽就越浅; 种子的ZR含量与种皮中类黄酮、花色素、黑色素含量显著负相关,与多酚含量显著正相关,与酪氨酸酶显著负相关,与苯丙氨酸解氨酶、多酚氧化酶无显著相关性; 施用外源细胞分裂素6-BA (50 mg L–1)可显著提高黄籽油菜黄籽度,明显降低甘蓝型油菜种皮中黑色素、花色素、类黄酮含量,对黑籽种皮的多酚含量无显著影响,但可增加黄籽种皮多酚含量; 6-BA处理可降低油菜种皮中酪氨酸酶、苯丙氨酸解氨酶活性,对多酚氧化酶活性无显著影响。表明细胞分裂素可减缓甘蓝型油菜种皮各色素合成,从而影响黄籽油菜色泽;该过程可能是通过调控色素合成的相关酶活性来实现的。
[1]Xiao D-R(肖达人), Liu H-L(刘后利). The correlation analysis of seed coat color and seed oil content in Brassica napus. Acta Agron Sin (作物学报), 1982, 8(4): 245–254 (in Chinese with English abstract)[2]Ye X-L(叶小利), Li J-N(李加纳), Tang Z-L(唐章林), Liang Y(梁颖), Chen L(谌利). Study on seed coat color and related characters of Brassica napus. Acta Agron Sin (作物学报), 2001, 27(5): 550–556 (in Chinese with English abstract)[3]Ye X-L(叶小利), Li-J-N(李加纳), Tang-Z-L(唐章林), Chen L(谌利). The different color between black seed and yellow seed coat during seed development in Brassica napus: II. The changes and relating of Melanin, tyrosinase and tyrosinase. Chin J Oil Crop Sci (中国油料作物学报), 2001, 23(3): 38–41 (in Chinese with English abstract)[4]Ye X-L(叶小利), Li J-N(李加纳), Tang Z-L(唐章林), Chen L(谌利). The different color between black seed and yellow seed coat during seed development in Brassica napus: I. the changes and relating of anthocyanin, phenylalanine and phenylalanine ammonialyase. Chin J Oil Crop Sci (中国油料作物学报), 2001, 23(2): 14–18 (in Chinese with English abstract) [5]Guan C-Y(官春云). High-yield Rapeseed Cultivation Techniques (油菜优质高产栽培技术). Changsha: Hunan Science and Technology Press, 1997 (in Chinese)[6]Pirie A, Mullins M G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissue treated with sucrose, nitrate and abscisic acid. Plant Physiol, 1976, 58: 468–472[7]Zhou X-Z(周旭章), Wei K-H(魏开华), Chen C-H(陈朝辉), Xie K(谢凯), Zhu J-J(朱建军). Research of extracting melanin from black sesame. J Chem Ind For Prod (林产化工通讯), 1997, (4): 17–19 (in Chinese)[8]Zucker M. Light and its relation to chlorogenic acid synthesis in patato tuber tissue. Plant Physiol, 1965, 40: 779–784[9]Tang S-G(唐尚格), Xia Y-X(夏玉先), Pei Y(裴炎). Indirect enzyme-linked immunosorbent assay endogenous plant hormones. J Southwest Agric Univ (西南农业大学学报), 1991, 13(2): 183–186 (in Chinese with English abstract)[10]Li Y-W(李雨薇), Xiao L-T(肖浪涛). Detection technology of status and development for plant hormones. Life Sci Instr (生命科学仪器), 2007, 5(12): 10–13 (in Chinese with English abstract)[11]Martin C A, Sharp W P. Alterations in leaf morphology of two landscape shrubs in response to disparate climate and paclobutrazol. Hort Sci, 1994, 29: 1321–1325[12]Jones D H. Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development. Phytochemistry, 1984, 23: 1349–1359[13]Yan G-H(闫国华), Gan L-J(甘立军), Sun R-H(孙瑞红). Gibberellin and cytokinin regulation of apple fruit growth mechanism of early. Acta Hort Sin (园艺学报), 2000, 27(1): 11–16 (in Chinese with English abstract)[14]Pomerantz S H. Separation, purification, and properties of two tyrosinase from hamster melanoma. J Biol Chem, 1963, 238: 2351–2356[15]Zhang Q(张琪), Cong P(丛鹏), Peng L(彭丽). Path Analysis in Excel and SPSS. Agric Network Inf (农业网络信息), 2007, (3): 109–111[16]Gao X Q, Kong F J, Wang F, Matsuura H, Yoshihara H. Inhibitory role of gibberellins in theobroxide-induced flowering of Pharbitis nil. J Plant Physiol, 2006, 163: 398–404[17]Liang Y-L(梁艳丽), Liang Y(梁颖), Li J-N(李加纳), Chen L(谌利). Comparison of the coat characteristics between yellow seed and black seed in Brassica napus. Chin J Oil Crop Sci (中国油料作物学报), 2001, 23(3): 38–41 (in Chinese with English abstract)[18]Suzukieta1 R M. Thidiazuron influences the endogenous levels of cytokinins and IAA during the flowering of isolated shoots of Dendrobiu. J Plant Physiol, 2004, 161: 929–935[19]Ye X-L(叶小利), Li X-G(李学刚), Li J-N(李加纳). Formation mechanism of melanin in Brassica napus seed coat. Acta Agron Sin (作物学报), 2002, 28(5): 638–643 (in Chinese with English abstract)[20]Bureau S, Renard C M G C, Reich M, Ginies C, Audergon J M. Change in anthocyanin concentrations in red apricot fruits during ripening. LWT-Food Sci Technol, 2009, 42: 372–377 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[4] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[5] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[6] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[7] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[8] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[9] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[10] | 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107. |
[11] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[12] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[13] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[14] | 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202. |
[15] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
|