欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 2034-2041.doi: 10.3724/SP.J.1006.2012.02034

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦生长素结合基因TaABP1-D的克隆、功能标记开发及其与株高的关联

乔麟轶1,**,张磊1,**,张文萍1,赵光耀2,王玺1,*,贾继增2,*   

  1. 1沈阳农业大学农学院, 辽宁沈阳 110866; 2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部作物基因资源与种质创制重点实验室, 北京 100081
  • 收稿日期:2012-03-22 修回日期:2012-06-15 出版日期:2012-11-12 网络出版日期:2012-09-10
  • 通讯作者: 王玺, E-mail: wxi2000@126.com; 贾继增, E-mail: jzjia@mail.caas.net.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2011ZX08009-001), 教育部博士点专项基金(20092103120010)和辽宁省科技厅博士启动基金(20091074)资助。

Molecular Cloning and Development of a Functional Marker of TaABP1-D Gene Associated with Plant Height in Bread Wheat

QIAO Lin-Yi1,**,ZHANG Lei1,**,ZHANG Wen-Ping1,ZHAO Guang-Yao2,WANG Xi1,*,JIA Ji-Zeng2,*   

  1. 1 College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Gene Resources & Germplasm Enhancement, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2012-03-22 Revised:2012-06-15 Published:2012-11-12 Published online:2012-09-10
  • Contact: 王玺, E-mail: wxi2000@126.com; 贾继增, E-mail: jzjia@mail.caas.net.cn

摘要:

生长素在植物生长发育过程中通过建立浓度梯度来调控植物的株型。ABP1 (auxin binding protein)作为生长素受体, 在质膜上相关生长素响应活动中起着重要的作用。本研究从普通小麦中国春基因组数据库中分离了TaABP1基因的基因组序列, 根据基因组间序列差异将 TaABP1 定位于小麦第5同源群。在中国春中克隆得到TaABP1-D基因的gDNA和cDNA序列。TaABP1-D基因的开放阅读框为1 887 bp, 编码205个氨基酸, 含有ABP1蛋白典型的内质网滞留信号KDEL及Box区域。表达分析表明, TaABP1-D在普通小麦中国春拔节期的根、茎基部、茎上部和叶尖均有表达, 相对表达量为叶尖>茎上部>根>茎基部, 与小麦的株型发育关系密切。系统发育分析表明, ABP1基因在植物中较为保守, TaABP1-D是水稻OsABP1的直向同源基因。针对TaABP1-D基因上游调控区重复序列差异(GT)6/5开发了一个SSR标记, 该标记在W7984× Opata85重组自交系(RIL)群体中对株高的表型变异解释率为9.7%, 是一个与株高极显著关联的功能标记; 其中对应高秆类型的等位变异属野生种特有, 在栽培种中被淘汰, 推测TaABP1-D基因在小麦驯化过程中可能经历了瓶颈效应。

关键词: 小麦, TaABP1-D基因, 同源克隆, 表达分析, 功能标记, 相关性分析

Abstract:

AUXIN BINDING PROTEIN1 (ABP1) is one of the ?rst characterized proteins that binds auxin. It ful?lls the criteria for an auxin receptor and plays an important role in auxin responses on the plasma membrane. In this study, the genomic sequence of a novel gene, designated TaABP1, isolated from the hexaploid wheat (Triticum aestivum L.) Chinese Spring genome databases. The result of chromosomal location showed that TaABP1 was on homoelogous group 5 of chromosomes in wheat. Then TaABP1-D was cloned in Chinese Spring. Sequence analysis showed that the complete open reading frame (ORF) of TaABP1-D was 1887 bp in length, encoding a putative protein composed of 205 amino acids with theendoplasmic reticulum retention sequence Lys-Asp-Glu-Leu (KDEL) and box regions. The expression of TaABP1-D was detected in root, basal stem, upper stem, and leaf tip of wheat at jointing stage with the expression levels as leaf tip > upper stems > root > base stem. Sequence alignment proved that TaABP1-D shared high homology with rice OsABP1 (82% protein sequence identity) and other plant ABPs reported. Using a population of recombinant inbred lines from the cross between W7984 and Opata85, an SSR maker was developed based on (GT)6/5 divergence in the upstream sequence of TaABP1-D. This marker was proved to be highly correlated with plant height, and the phenotypic variation explained was 9.7%. The W7984 type allelic variation for tall plant was specific in wild varieties, and eliminated in cultivated varieties. This indicates that the favorable variation of TaABP1-D has been fixed in cultivated varieties of wheat, and a bottleneck effect might occur during the domestication of wheat.

Key words: Wheat, TaABP1-D, Homologous cloning, Expression analysis, Functional marker, Association analysis

[1]Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell, 2009, 136: 1005–1016



[2]Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 441–445



[3]Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 446-451



[4]Jurado S, Abraham Z, Manzano C, Lopez-Torrejon G, Pacios L F, Del Pozo J C. The Arabidopsis cell cycle F box protein SKP2A binds to auxin. Plant Cell, 2010, 22: 3891–3904



[5]Renate D, Hartwig L, Bianka S. ABP1, an auxin receptor for fast responses at the plasma membrane. Plant Signaling & Behavior, 2010, 5: 1–3



[6]Hertel R, Thomson K S, Russo V E A. In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta, 1972, 107: 325–340



[7]Tillmann U, Viola G, Kayser B, Siemeister G, Hesse T, Palme K, Lobler M, Klambt D. cDNA clones of the auxin-binding protein from corn coleoptiles (Zea mays L.): isolation and characterization by immunological methods. EMBO J, 1989, 8: 2463–2467



[8]David K M, Couch D, Braun N, Brown S, Grosclaude J, Perrot-Rechenmann C. The auxin-binding protein 1 is essential for the control of cell cycle. Plant J, 2007, 50: 197–206



[9]Braun N, Wyrzykowska J, Muller P, David K, Couch D, Perrot-Rechenmann C, Fleming A J. Conditional repression of AUXIN BINDING PROTEIN1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell, 2008, 20: 2746–2762



[10]Perrot-Rechenmann C. Cellular responses to auxin: division versus expansion. Cold Spring Harbor Perspective in Biology, 2010, 2: a001446



[11]Xu T, Wen M, Nagawa S, Fu Y, Chen J G, Wu M J, Perrot-Rechenmann C, Friml J, Jones A M, Yang Z. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell, 2010, 143: 99–110



[12]Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, ?ovanová M, Hayashi K, Dhonukshe P, Yang Z B, Bednarek S Y, Jones A M, Luschnig C, Aniento F, Za?ímalová E, Friml J. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell, 2010, 143: 111–121



[13]Paciorek T, Zaz?malova E, Ruthardt N, Petrasek J, Stierhof Y D, Kleine-Vehn J, Morris D A, Emans N, Jurgens G, Geldner N, Friml J. Auxin inhibits endocytosis and promotes its own ef?ux from cells. Nature, 2005, 435: 1251–1256



[14]Choi S Y. Molecular cloning and expression of the hot pepper ERabp1 gene encoding auxin-binding protein. Plant Mol Biol, 1996, 32: 995–997



[15]Huang Y(黄妤), Liu F(刘峰), Guo Q-Q(郭清泉), Zhang X-W(张学文). Cloning and expression of auxin-binding proteins 1 gene in ramie [Boehmeria nivea (Linn.) Gaud.]. Acta Agron Sin (作物学报), 2008, 34(8): 1358–1365 (in Chinese with English abstract)



[16]Devos K M, Gale M D. The use of random amplified polymorphic DNA marker in wheat. Theor Appl Genet, 1992, 84: 567–572



[17]Gai J-Y(盖钧镒). Method for Experimental Statistics (试验统计方法). Beijing: China Agriculture Press, 2000. pp 90–91 (in Chinese)



[18]Cechin A L, Sinigaglia M, Lemke N, Echeverrigaray S, Cabrera O G, Pereira G, Mombach J. Cupin: a candidate molecular structure for the Nep1-like protein family. London: BioMed Central Ltd., 2008 [2012-03-10]. http://www.biomedcentral.com/1471-2229/8/50



[19]Wang B(王冰), Li J-Y(李家洋), Wang Y-H(王永红). Advances in understanding the roles of auxin involved in modulating plant architecture. Chin Bull  Bot (植物学通报), 2006, 23(5): 443–458 (in Chinese with English abstract)



[20]Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell, 2002, 108: 661–673



[21]Benjamins R, Scheres B. Auxin: the looping star in plant development. Annu Rev Plant Biol, 2008, 59: 443–465



[22]Li Y C, Korol A B, Fahim T, Nevo E. Microsatellites within genes: structure, function, and evolution. Mol Biol Evol, 2004, 21: 991–1007



[23]Chapman M A, Pashley C H, Wenzler J, Hvala J, Tang S X, Knapp S J, Burkea J M. A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus). Plant Cell, 2008, 20: 2931–2945



[24]Hao C-Y(郝晨阳), Dong Y-C(董玉琛), Wang L-F(王兰芬), You G-X(游光霞), Zhang H-N(张洪娜), Ge H-M(葛红梅), Jia J-Z(贾继增), Zhang X-Y(张学勇). Construction and genetic diversity analysis of common wheat core collection in China. Chin Sci Bull (科学通报), 2008, 53(8): 908–915 (in Chinese without English abstract)



[25]Dong Y-C(董玉琛), Cao Y-S(曹永生), Zhang X-Y(张学勇), Liu S-C(刘三才), Wang L-F(王兰芬), You G-X(游光霞), Pang B-S(庞斌双), Li L-H(李立会), Jia J-Z(贾继增). Development of candidate core collections in Chinese common wheat germplasm. J Plant Gene Resour (植物遗传资源学报), 2003, 4(1): 1–8 (in Chinese with English abstract)



[26]Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith S, Jaqueth J, Smith O, Doebley J. An analysis of genetic diversity across the maize genome using microsatellites. Genetics, 2005, 169:1617–1630



[27]Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito K, Doi K, Wu J Z, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M. Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA, 2011, 108: 11034–11039



[28]Effendi Y, Rietz S, Fischer U, Scherer G F E. The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes. Plant J, 2011, 65: 282–294

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[7] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!