作物学报 ›› 2013, Vol. 39 ›› Issue (02): 238-248.doi: 10.3724/SP.J.1006.2013.00238
李小军,冯素伟,李淦,董娜,陈向东,宋杰, 茹振钢*
LI Xiao-Jun,FENG Su-Wei,LI Gan,DONG Na,CHEN Xiang-Dong,SONG Jie,RU Zhen-Gang*
摘要:
[1]Zhuang Q-S(庄巧生). Chinese Wheat Improvement and Pedigree Analysis (中国小麦品种改良及系谱分析). Beijing: China Agriculture Press, 2003 (in Chinese)[2]Wang Q-Z(王庆专), Yuan Y-Y(袁园园), Cui F(崔法), Zhao C-H(赵春华), Du B(杜斌), Zhang J-T(张景涛), Wang H-G(王洪刚). Genetic differentiation analysis on the wheat backbone parent Bima No.4 and its four sib-lines. Mol Plant Breed (分子植物育种), 2009, 7(6): 1100−1105 (in Chinese with English abstract)[3]Li X-J(李小军), Hu T-Z(胡铁柱), Li G(李淦), Jiang X-L(姜小苓), Feng S-W(冯素伟), Dong N(董娜), Zhang Z-Y(张自阳), Ru Z-G(茹振钢), Huang Y(黄勇). Genetic analysis of broad-grown wheat cultivar Bainong AK58 and its sib lines. Acta Agron Sin (作物学报), 2012, 38(3): 436−446 (in Chinese with English abstract)[4]Bernardo R, Murigneux A, Maisonneuve J P, Johnsson C, Karaman Z. RFLP-based estimates of parental contribution to F2- and BC1-derived maize inbreds. Theor Appl Genet, 1997, 94: 652−656[5]Bernardo R, Romero-Severson J, Ziegle J, Hauser J, Joe L, Hookstra G, Doerge R W. Parental contribution and coefficient of coancestry among maize inbreds: pedigree, RFLP, and SSR data. Theor Appl Genet, 2000, 100: 552−556[6]Sjakste T G, Rashal I, Röder M S. Inheritance of microsatellite alleles in pedigrees of Latvian barley varieties and related European ancestors. Theor Appl Genet, 2003, 106: 539?549[7]Qin J(秦君), Li Y-H(李英慧), Liu Z-X(刘章雄), Guan R-X(关荣霞), Zhang M-C(张孟臣), Chang R-Z(常汝镇), Li G-M(李广敏), Ma Z-Y(马峙英), Qiu L-J(邱丽娟). Genetic relationship among parents of elite Soybean (Glycine max) cultivars Suinong 14 pedigree revealed by SSR markers. Sci Agric Sin (中国农业科学), 2008, 41(12): 3999−4007 (in Chinese with English abstract)[8]Drouaud J, Camilleri C, Bourguignon P Y, Canaguier A, Berard A, Vezon D, Giancola S, Brunel D, Colot V, Prum B, Quesneville H, Mézard C. Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination ‘‘hot spots’’. Genome Res, 2006, 16: 106–114[9]Fu H H, Zheng Z W, Dooner H K. Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc Natl Acad Sci USA, 2002, 99: 1082–1087[10]Petes T D. Meiotic recombination hot spots and cold spots. Nat Rev Genet, 2001, 2: 360–369[11]Myers S, Bottolo L, Freeman C, McVean G, Donnelly P. A ?ne-scale map of recombination rates and hotspots across the human genome. Science, 2005, 310: 321–324[12]Ptak S E, Hinds D A, Koehler K, Nickel B, Patil N, Ballinger D G, Przeworski M, Frazer K A, Paabo S. Fine-scale recombination patterns differ between chimpanzees and humans. Nat Genet, 2005, 37: 429–434[13]Kauppi L, Jasin M, Keeney S. Meiotic crossover hotspots contained in haplotype block boundaries of the mouse genome. Proc Natl Acad Sci USA, 2007, 104:13396–13401[14]Xu X, Hsia A P, Zheng L, Nikolau B, Schanable P. Meiotic recombination break points resolve at high rates at the 5' end of a maize coding sequence. Plant Cell, 1995, 7: 2151?2161[15]Säll T, Nilsson N O. Crossover distribution in barley analysed through RFLP linkage data. Theor Appl Genet, 1994, 89: 211–216[16]Lorenzen L L, Lin S F, Shoemaker R C. Soybean pedigree analysis using map-based molecular markers: recombination during cultivar development. Theor Appl Genet, 1996, 93: 1251–1260[17]Qin J(秦君), Jiang C-X(姜成喜), Liu Z-X(刘章雄), Fu Y-S(付亚书), Guan R-X(关荣霞), Chen W-Y(陈维元), Li Y-H(李英慧), Zhang M-C(张孟臣), Jing Y-L(景玉良), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Genetic diversity and recombination of Soybean cultivar Suinong 14 and its pedigree. Hereditas (遗传), 2006, 28(11): 1421–1427 (in Chinese with English abstract)[18]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325[19]Rohlf F J. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version 2.10. Exeter Software, New York, 2002[20]Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 1996, 2: 225–238[21]Sneath P H A, Sokal R R. Numerical Taxonoma. San Francisco: Freeman, 1973[22]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114[23]Han J(韩俊), Zhang L-S(张连松), Li J-T(李静婷), Shi L-J(石丽娟), Xie C-J(解超杰), You M-S(尤明山), Yang Z-M(杨作民), Liu G-T(刘广田), Sun Q-X(孙其信), Liu Z-Y(刘志勇). Molecular dissection of core parental cross “Triumph/Yanda1817” and its derivatives in wheat breeding program. Acta Agron Sin (作物学报), 2009, 35(8): 1395–1404 (in Chinese with English abstract)[24]Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T, Xu Y, Jiang F, Wang H, Li L. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167–178[25]Singh N D, Aquadro C F, Clark A G. Estimation of fine-scale recombination intensity variation in the white–echinus interval of D. melanogaster. J Mol Evol, 2009, 69: 42–53[26]Fearnhead P, Smith N G C. A novel method with improved power to detect recombination hotspots from polymorphism data reveals multiple hotspots in human genes. Am J Hum Genet, 2005, 77: 781–794[27]Jiang H, Li N, Gopalan V, Zilversmit M M, Varma S, Nagarajan V, Li J, Mu J, Hayton K, Henschen B, Yi M, Stephens R, McVean G, Awadalla P, Wellems T E, Su X. High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol, 2011, 12: R33[28]Li X J, Xu X, Yang X M, Li X Q, Liu W H, Gao A N, Li L H. Genetic diversity among a founder parent and widely grown wheat cultivars derived from the same origin based on morphological traits and microsatellite markers. Crop Pasture Sci, 2012, 63: 303–310[29]Yuan Y-Y(袁园园), Wang Q-Z(王庆专), Cui F(崔法), Zhang J-T(张景涛), Du B(杜斌), Wang H-G(王洪刚). Specific loci in genome of wheat milestone parent Bima 4 and their transmission in derivatives. Acta Agron Sin (作物学报), 2010, 36(1): 9–16 (in Chinese with English abstract)[30]Bernardo R. Best linear unbiased prediction of maize single-cross performance given erroneous inbred relationships. Crop Sci, 1996, 36: 862–866 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919. |
[4] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[9] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[10] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[11] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[12] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[13] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[14] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[15] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
|