欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (03): 455-463.doi: 10.3724/SP.J.1006.2013.00455

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米出籽率、籽粒深度和百粒重的QTL分析

张伟强1,2,库丽霞2,张君2,韩赞平2,3,陈彦惠2,*   

  1. 1 驻马店市农业科学院, 河南驻马店463000; 2 河南农业大学农学院, 河南郑州450002; 3 河南科技大学农学院, 河南洛阳471003
  • 收稿日期:2012-11-16 修回日期:2012-11-16 出版日期:2013-03-12 网络出版日期:2013-01-04
  • 通讯作者: 陈彦惠, E-mail: chy989@sohu.com, Tel: 0371-63558032
  • 基金资助:

    本研究由河南省主要粮食作物遗传改良及优异种质创新基础研究和河南省玉米产业技术体系首席专家项目(S2010-02)资助。

QTL Analysis of Kernel Ratio, Kernel Depth and 100-Kernel Weight in Maize (Zea mays L.)

ZHANG Wei-Qiang1,2,KU Li-Xia2,ZHANG Jun2,HAN Zan-Ping2,3,CHEN Yan-Hui2,*   

  1. 1 Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, China; 2 College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China ?; 3 College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China
  • Received:2012-11-16 Revised:2012-11-16 Published:2013-03-12 Published online:2013-01-04
  • Contact: 陈彦惠, E-mail: chy989@sohu.com, Tel: 0371-63558032

摘要:

为研究玉米出籽率、籽粒深度、百粒重的遗传机制,以豫82×137组配的229F2:3家系为试验材料,采用复合区间作图法进行QTL定位分析。在3个环境下共检测到10QTL。其中,控制出籽率、籽粒深度、百粒重相关QTL分别为3个、3个和4个,它们的联合贡献率分别为35.5%28.1%39.0%位于第1染色体上介于标记umc1335umc2236之间控制出籽率的QTL qKR1b和位于第9染色体上介于标记bnlg1209–umc2095之间控制百粒重QTL q100-KW9b分别解释18.9%11.7%的表型变异,且作用方式为加性效应,分析表明这些区域可能包含调控玉米籽粒性状关键基因,对剖析玉米产量形成机制具有重要的参考价值。

关键词: 玉米, 出籽率, 籽粒深度, 百粒重, QTL分析

Abstract:

In order to study the genetic mechanism of kernel ratio (KR, %), kernel depth (KD), and 100-kernel weight (100-KW) in maize, we constructed a mapping population consisting of 229 F2:3 lines from the cross between inbred lines Yu 82 and Shen 137. QTL mapping and analysis for the three traits were conducted under the three environments by composite interval mapping (CIM) method. Three, three and four QTLs were detected for kernel ratio, kernel depth, and 100-kernel weight, with the joint contribution rate of 35.5%, 28.1%, and 39.0% respectively. One major QTL qKR1b controlling kernel ratio was detected on chromosome 1, locating in marker of interval umc1335–umc2236, explaining 18.9% of the phenotypic variation. Another major QTL q100-KW9b controlling 100-kernel weight was detected in marker of interval bnlg1209-umc2095 on chromosome 9, with explained 11.7% of the phenotypic variation, and gene action of additive effect. The results showed that some key genes for kernel characters are possibly contained in these regions, having an important researchvalue to analyze the genetic mechanism of maize yield formation.

Key words: Maize (Zea mays L.), Kernel ratio, Kernel depth, 100-kernel weight, QTL analysis

[1]Duvick D N, Cassmain K G. Post-green revolution trends in yield potential of temperate maize in the Northern-central United States. Crop Sci, 1999, 39: 1622–1630



[2]Lu M(路明). QTL Mapping and Genetic Basis of Yield and Plant Architecture in Maize. PhD Dissertation of the Chinese Academy of Agricultural Sciences, 2007. p 9 (in Chinese with English abstract)



[3]Ma J-L(马金亮). Analysis of QTL for Yield and Related Traits Using Found Inbred line in Maize. MS Thesis of Henan Agricultural University, 2010. p 7 (in Chinese with English abstract)



[4]Yang X-H(杨小红), Yan J-B(严建兵), Zheng Y-P(郑艳萍), Yu J-M(余建明), Li J-S(李建生). Reviews of association analysis for quantitative traits in plants. Acta Agron Sin (作物学报), 2007, 33(4): 523–530 (in Chinese with English abstract)



[5]Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85–88



[6]Liu J P, Eck J V, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA, 2002, 99: 13302–13306



[7]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene. Plant Cell, 2000, 12: 2473–2483



[8]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922–7927



[9]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741–745



[10]Wang H, Nussbaum-Wagler T, Li B L, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley J. The origin of the naked grains of maize. Nature, 2005, 436: 714–719



[11]Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433–2437



[12]Zheng P, Allen W B, Roesler K, Williams M E, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367–372



[13]Wang J-K(王建康), Li H-H(李慧慧), Zhang X-C(张学才), Yin C-B(尹长斌), Li Y(黎裕), Ma Y-Z(马有志), Li X-H(李新海), Qiu L-J(邱丽娟), Wan J-M(万建民). Molecular design breeding in crops in China. Acta Agron Sin (作物学报), 2011, 37(2): 191–201 (in Chinese with English abstract)



[14]Huang Y F, Madur D, Combes V, Ky C L, Coubriche D, Jamin P, Jouanne S, Dumas F, Bouty E, Bertin P, Charcosset A, Moreau L. The genetic architecture of grain yield and related traits in Zea may L. revealed by comparing intermated and conventional populations. Genetics, 2010, 186: 395–404



[15]Sabadin P K, Souza C L Jr, Souza A P, Garcia A A F. QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas, 2008, 145: 194–203



[16]Guo J, Su G, Zhang J, Wang G. Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Afr J Biotechnol, 2008, 7: 1829–1838



[17]Lu G H, Tang J H, Yan J B, Ma X Q, Li J S, Chen S J, Ma J C, Liu Z X, E L Z, Zhang Y R, Dai J R. Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol, 2006, 48: 1233–1243



[18]Liu X H, He S L, Zheng Z P, Huang Y B, Tan Z B, Wu X. QTL identification for row number per ear and grain number per row in maize. Maydica, 2010, 55: 127–133



[19]Li M, Guo X, Zhang M, Wang X, Zhang G D, Tian Y C, Wang Z L. Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Sci, 2010, 178: 454–462



[20]Wang B-T(王帮太), Zhang S-H(张书红), Xi Z-Y(席章营). QTL mapping for ear length based on chromosome single segment substitution lines of 87-1 and Zong3 in maize. J Maize Sci (玉米科学), 2012, 20(3): 9–14 (in Chinese with English abstract)



[21]Tan W-W(谭巍巍), Wang Y(王阳), Li Y-X(李永祥), Liu C(刘成), Liu Z-Z(刘志斋), Peng B(彭勃), Wang D(王迪), Zhang Y(张岩), Sun B-C(孙宝成), Shi Y-S(石云素), Song Y-C(宋燕春), Yang D-G(杨德光), Wang T-Y(王天宇), Li Y(黎裕). QTL analysis of ear traits in maize across multiple environments. Sci Agric Sin (中国农业科学), 2011, 44(2): 233–244 (in Chinese with English abstract)



[22]Liu X H, He S L, Zheng Z P, Tan Z B, Li Z, He C. Genetic loci mapping associated with maize kernel number per ear based on a recombinant inbred line population grown under different nitrogen regimes. Genet Mol Res, 2011, 10: 3267–3274



[23]Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environment: I. Grain yield and yield components. Crop Sci, 1996, 36: 1310–1319



[24]Austin D F, Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet, 1996, 92: 817–826



[25]Sene M, Thevenot C, Hoffmann D, Benetrix F, Causse M, Prioul J L. QTL for grain dry milling properties, composition and virtuousness in maize recombinant inbred lines. Theor Appl Genet, 200l, 102: 591–599



[26]Yang J-P(杨俊品), Rong T-Z(荣廷昭), Xiang D-Q(向道权), Tang H-T(唐海涛), Huang L-J(黄烈健), Dai J-R(戴景瑞). QTL mapping of quantitative traits in maize. Acta Agron Sin (作物学报), 2005, 21(2): 188–196 (in Chinese with English abstract)



[27]Li Y-X(李永祥), Wang Y(王阳), Shi Y-S(石云素), Song Y-C(宋燕春), Wang T-Y(王天宇), Li Y(黎裕). Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Sci Agric Sin (中国农业科学), 2009, 42(2): 408–418 (in Chinese with English abstract) 



[28]Zhang J(张君). QTL Mapping and Analysis on Plant Architecture and Yield Related Traits in Maize. MS Dissertation of the Henan Agricultural University, 2010. p 7 (in Chinese with English abstract)



[29]Li J Z, Zhang Z W, Li Y L, Wang Q L, Zhou Y G. QTL consistency and meta-analysis for grain yield components in three generations in maize. Theor Appl Genet, 2011, 122: 771–782



[30]Peng B, Li Y X, Wang Y, Liu C, Liu Z Z, Tan W W, Zhang Y, Wang D, Shi Y S, Sun B C, Song Y C, Wang T Y, Li Y. QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet, 2011, 122: 1305–1320



[31]Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985, 25: 192–194



[32]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2007. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)



[33]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468



[34]Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963–971



[35]Stuber C W, Edwards M D, Wendel J. Molecular marker-facilitated investigations of quantitative trait loci in maize: II. Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639–648



[36]Xiao Y N, Li X H, George M L, Li M S, Zhang S H, Zheng Y L. Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Mol Biol Rep, 2005, 23: 155–165



[37]Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149: 121–131



[38]Tang J-H(汤继华), Yan J-B (严建兵), Ma X-Q(马西青), Teng W-T(腾文涛), Meng Y-J(孟义江), Dai J-R(戴景瑞), Li J-S(李建生). Genetic dissection for grain yield and its components using an “Immortalized F2 Population” in maize. Acta Agron Sin (作物学报), 2007, 33(8): 1299–1303 (in Chinese with English abstract)



[39]Li H-H(李慧慧), Zhang L-Y(张鲁燕), Wang J-K(王健康). Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin (作物学报), 2010, 36(6): 918–931 (in Chinese with English abstract)



[40]Knapp S J, Bridges W C, Birkes D. Mapping quantitative trait loci using molecular maker linkage maps. Theor Appl Genet, 1990, 79: 583–592

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!