欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (04): 720-726.doi: 10.3724/SP.J.1006.2013.00720

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻低温胁迫不同时间的代谢物谱图分析

赵秀琴,张婷,王文生,张帆,朱苓华,傅彬英*,黎志康   

  1. 中国农业科学院作物科学研究所/农作物基因资源和遗传改良国家重大科学工程, 北京 100081; 中国农业科学院深圳生物育种创新研究院, 广东 深圳 518083
  • 收稿日期:2012-07-23 修回日期:2012-11-16 出版日期:2013-04-12 网络出版日期:2013-01-28
  • 通讯作者: 傅彬英, E-mail: fuby@caas.net.cn, Tel: 010-82106698
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2011ZX08001-003), 引进国际先进农业科学技术(948计划)项目(2011-G2B)和国家高技术研究发展计划(863计划)项目(2012AA101101)资助。

Time-Course Metabolic Profiling in Rice under Low Temperature Treatment

ZHAO Xiu-Qin,ZHANG Ting,WANG Wen-Sheng,ZHANG Fan,ZHU Ling-Hua,FU Bin-Ying*,LI Zhi-Kang   

  1. Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518083, China?
  • Received:2012-07-23 Revised:2012-11-16 Published:2013-04-12 Published online:2013-01-28
  • Contact: 傅彬英, E-mail: fuby@caas.net.cn, Tel: 010-82106698

摘要:

苗期低温严重影响水稻幼苗生长, 分析低温胁迫下幼苗体内代谢物变化特征有助于解析水稻应对胁迫的生理机制。采用气质谱联用仪(GC-MS)技术系统分析水稻品种IR64遭遇不同时间段低温后代谢物图谱的变化特征。结果表明, 草酸、戊糖酸-1,4-内酯、海藻糖及水杨酸参与了水稻低温胁迫早期应激性反应; 在低温胁迫过程中, 水稻植株主要通过苯丙氨酸、脯氨酸、谷氨酸、丝氨酸、苏氨酸、天门冬氨酸、缬氨酸、木糖醇、尿囊素和鼠李糖等含量的提高维持细胞渗透平衡。代谢物动态分析发现参与低温胁迫反应及胁迫恢复后进程的主要代谢物不同。研究结果为全面系统剖析水稻耐冷胁迫的分子生理机制打下了基础。

关键词: 水稻, 代谢物谱图, 低温

Abstract:

Rice seedling growth is inhibited greatly by the occurrence of low temperature. Characterization of the dynamic changes in rice metabolite under chilling stress will contribute to the understanding of physiological mechanism responsive to abiotic stresses. At the present study, the time-course metabolic profiling of the rice variety, IR64, under low temperature was investigated with GC-MS technique. The results showed that the contents of the oxalic acid, pentonic acid-1,4-lactone, trehalose and salicylic acid increased greatly at the early chilling stress, while phenylalanine, proline, glutamicate, serine, threonine, asparticate, valine, xylitol, allantoin, and rhamnose were induced significantly by the low temperature treatment to keep the osmotic homeostasis. Further dynamic analysis of metabolites indicated that different sets of metabolites were involved in the chilling stress response and the subsequent recovery process. All these results provide a basis for further elucidation of molecular physiological mechanism in rice chilling tolerance.

Key words: Rice, Metabolic Profiling, Low temperature

[1]Boyer J S. Plant productivity and environment. Science, 1982, 218: 443–448



[2]Suzuki N, Mittler R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant, 2006, 126: 45–51



[3]Chinnusamy V, Zhu J, Zhu J K. Cold stress regulation of gene expression in plants. Trends Plant Sci, 2007, 12: 444–451



[4]Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13: 61–72



[5]Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14: 1675–1690



[6]Kreps J A, Wu Y, Chang H S, Zhu T, Wang X, Harper J F. Transcriptome changes for Arabidopsis in response to salt, osmotic and cold stress. Plant Physiol, 2002, 130: 2129–2141



[7]Cook D, Fowler S, Fiehn O, Thomashow M F. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 15243–15248



[8]Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998–1009



[9]Kaplan F, Kopka J, Haskell D W, Zhao W, Schiller K C, Gatzke N, Sung D Y, Guy C L. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol, 2004, 136: 4159–4168



[10]Fiehn O. Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol, 2002, 48: 155–171



[11]Yoshiba Y, Kiyosue T, Nakashima K, Kazuko Y S, Shinozakj K. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol, 1997, 38: 1095–1102



[12]Smirnoff N. The function and metabolism of ascorbic acid in plants. Ann Bot, 1996, 78: 661–669



[13]Qiu D-Y(邱德有), Huang L-Q(黄璐琦). Metabolomics—an important part of functional genomics. Mol Plant Breed (分子植物育种), 2004, 2(2): 165–177 (in Chinese with English abstract)



[14]Hall R D. Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol, 2006, 169: 453–468



[15]Lu H-M(卢红梅), Liang Y-Z(梁逸曾). The development of analytical technologies and data mining in metabolomics. J Instrum Anal (分析测试学报), 2008, 27: 325–331 (in Chinese with English abstract)



[16]Roessner U, Wagner C, Kopka J, Trethewey R, Willmitzer L. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J, 2000, 23: 131–142



[17]Tarpley L, Duran A L, Kebrom T H, Sumner L W. Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol, 2005, 5: 8



[18]Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie A R. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol, 2006, 24: 447–454



[19]Meyer R C, Steinfath M, Lisec J, Becher M, Hanna W W, Fiehn O, Eckardt A, Willmitzer L, Selbig J, Altmann T. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2007, 104: 4759–4764



[20]Hirai M Y, Mitsuru Y, Dayan B G, Shigehiko K, Kimura T, Awazuhara M, Masanori A. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2004, 101: 10205–10210



[21]Nikiforova V J, Bielecka M, Gakie` re B, Krueger S, Rinder J, Kempa S, Morcuende R, Scheible W R, Hesse H, Hoefgen R. Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids, 2006, 30, 173–183



[22]Zuther E, Koehl K, Kopka J. Comparative metabolome analysis of the salt response in breeding cultivars of rice. In: Jenks M A, Hasegawa P M, Jain S M, eds. Advances in molecular breeding toward drought and salt tolerance crops. New York: Springer-Verlag, 2007. pp 285–315



[23]Armengaud P, Sulpice R, Miller A J, Stitt M, Amtmann A, Gibon Y. Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol, 2009, 150: 772–785



[24]Gupta A K, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci, 2005, 30: 761–776



[25]Wingler A, Roitsch T. Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses. Plant Biol, 2008, 10: 50–62



[26]Widodo, Patterson J H, Newbigin E, Tester M, Bacic A, Roessner U. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot, 2009, 60: 4089–4103



[27]Yun K Y, Park M R, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic V B, Bruskiewich R, de Los Reyes BG. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol, 2010, 10: 16



[28]Institute of Plant Physiology, Chinese Academy of Sciences (中国科学院上海植物生理研究所) ed. Modern Laboratory Manual of Plant Physiology (现代植物生理学实验指南). Beijing: Science Press, 1998 (in Chinese)



[29]Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Ferniea A R. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell, 2001, 13: 11–29



[30]Bowne J B, Erwin T A., Juttner J, Schnurbusch T, Langridge P, Bacic A. Roessner U. Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant, 2012, 5: 418–429



[31]Valpuesta V, Botella M A. Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci, 2004, 9:573-577



[32]Metraux J P, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science, 1990, 250: 1004–1006



[33]Schmelz E A, Engelberth J, Alborn H T, O’Donnell P, Sammons M, Toshima H, Tumlinson J H III. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci USA, 2003, 100: 10552–10557



[34]Garg K, Kim J K, Owens T G, Ranwala A P, Choi Y D, Kochian L V, Wu J. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA, 2002, 99: 15898–15903



[35]Morsy M R, Jouve L, Hausman J F, Hoffmann L, Stewart J M. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol, 2007, 164: 157–167
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!